Skip to main content

Thermal Pollution Caused by Hydropower Plants

  • Conference paper
  • First Online:
Energy Systems and Management

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

Thermal pollution is the change in the water temperatures of lakes, rivers, and oceans caused by man-made structures. These temperature changes may adversely affect aquatic ecosystems especially by contributing to the decline of wildlife populations and habitat destruction. Any practice that affects the equilibrium of an aquatic environment may alter the temperature of that environment and subsequently cause thermal pollution. There may be some positive effects, though, to thermal pollution, including the extension of fishing seasons and rebounding of some wildlife populations. Thermal pollution may come in the form of warm or cold water being dumped into a lake, river, or ocean. Increased sediment build-up in a body of water affects its turbidity or cloudiness and may decrease its depth, both of which may cause a rise in water temperature. Increased sun exposure may also raise water temperature. Dams may change a river habitat into a lake habitat by creating a reservoir (man-made lake) behind the dam. The reservoir water temperature is often colder than the original stream or river. The sources and causes of thermal pollution are varied, which makes it difficult to calculate the extent of the problem. Because the thermal pollution caused by Hydropower Plants (HPPs) may not directly affect human health, it is neglected in general. Therefore, sources and results of thermal pollution in HPPs are ignored in general. This paper aimed to reveal the causes and results of thermal pollution and measures to be taken in HPPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aksungur, M., Alkan, A., Zengin, B., Tabak, Ä°., & Yılmaz, C. (2007). Karadeniz Alabalığının Tatlısu Ortamındaki Göçü Ãœzerine Bazı Çevresel Parametrelerin Etkisi. Ekoloji, 17(65), 28–35.

    Article  Google Scholar 

  • Aksungur, M., Ak, O., & Özdemir, A. (2011). Nehir tipi hidroelektrik santrallerinin sucul ekosisteme etkisi: Trabzon ÖrneÄŸi. Journal of Fisheries Sciences, 5(1), 79–92.

    Google Scholar 

  • Allan, J. D., & Castillo, M. M. (2007). Stream ecology: Structure and function of running waters (2nd ed.). Dordrecht: Springer.

    Book  Google Scholar 

  • Allan, J. D., & Flecker, A. S. (1993). Biodiversity conservation in running waters. BioScience, 43, 32–43.

    Article  Google Scholar 

  • Bobat, A., Hengirmen, M., & Zapletal, W. (2002). Problems of zebra mussel at dams and hydro projects on the Euphrates River, Hydro 2002: Development, Management and Performance, Antalya, Proceedings Book, 475–484.

    Google Scholar 

  • Bobat, A. (2003). Hidroelektrik Santrallarda Ekolojik Bir Sorun: Zebra Midye, Türkiye 9. Enerji Kongresi, Bildiriler Kitabı, Cilt I, 327–349.

    Google Scholar 

  • Bobat, A., Hengirmen, M., & Zapletal, W. (2004). Zebra mussel and fouling problems in the Euphrates basin. Turkish Journal of Zoology, 28, 161–177.

    Google Scholar 

  • Bobat, A. (2010). YavaÅŸ ve Sessiz Olur Akarsuların Ölümü-III: Baraj ve HES’lerin Etkileri (The streams die slowly and quietly—III: The Positive and Negative Effects of Dams and HPPs), December 15, 2010. www.enerjienergy.com

  • Bobat, A. (2013). The triple conflicts in hydro projects: Energy, economy and environment, Fresenius Environmental Bulletin, 22(7a), 2093–2097.

    Google Scholar 

  • Coutant, C. C. (1977). Compilation of temperature preference data. Journal of the Fisheries Research Board of Canada, 34, 740–745.

    Article  Google Scholar 

  • Davis, J. (2006). Advances in hydropower technology can protect the environment, alternative energy sources (pp. 82–87). Detroit: Greenhaven.

    Google Scholar 

  • DOE (U.S. Department of Energy). (2004). Hydropower: Setting a course for our energy future, DOE/GO-102004-1981. http://www.nrel.gov/docs/fy04osti/34916.pdf

  • Eaton, J. G., McCormick, J. H., Goodno, B. E., O’Brien, D. G., Stefany, H. G., Hondzo, M., & Sheller, R. M. (1995). A field information-based system for estimating fish temperature tolerances. Fisheries, 20(4), 10–18.

    Google Scholar 

  • Edwards, R. W., Densem, J. W., & Russell, P. A. (1979). An assessment of the importance of temperature as a factor controlling the growth rate of brown trout in streams. Journal of Animal Ecology, 48(2), 501–507.

    Article  Google Scholar 

  • EERE (Office of Energy Efficiency and Renewable Energy). (2006). Wind energy systems integration. Washington, DC: U.S. Department of Energy. http://www1.eere.energy.gov/windandhydro/wind_sys_integration.html

  • Ely, R. T., & Wicker, G. R. (2007). Elementary principles of economics: Together with a short sketch of economic history, chapter II: The factors of production. Whitefish: Kessinger Publishing, LLC.

    Google Scholar 

  • EPA. (2002). Biological assessments and criteria: Crucial components of water quality programs. USA-EPA, Office of Water, 822-F-02-006.

    Google Scholar 

  • Haider, Q. (2013). Thermal pollution of water by power plants. The Daily Star, September 14, 2013.

    Google Scholar 

  • HowStuffWorks. (2001). How hydropower plants work. http://science.howstuffworks.com/environmental/energy/hydropower-plant1.htm. Access: September 11, 2014.

  • Humphreys, B. R., Maccini, L. J., & Schuh, S. (2001). Input and output inventories. Journal of Monetary Economics, 47, 347–375.

    Article  Google Scholar 

  • Kumar, A., Schei, T., Ahenkorah, A., Caceres Rodriguez, R., Devernay, J. M. Freitas, M., Hall, D., Killingtveit, A., & Liu, Z. (2011). Hydropower. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer & C. von Stechow (Eds.), IPCC special report on renewable energy sources and climate change mitigation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lee, R. M., & Rinne, J. N. (1980). Critical thermal maxima of five trout species in the Southwestern United States. Transactions of the American Fisheries Society, 109, 632–635.

    Article  Google Scholar 

  • Matthews, K. R., Berg, N. H., Azuma, D. L., & Lambert, T. R. (1994). Cool water formation and trout habitat use in a deep pool in the sierra Nevada, California. Transactions of the American Fisheries Society, 123(4), 549–564.

    Article  Google Scholar 

  • Matthews, K. R., & Berg, N. H. (1997). Rainbow trout responses to water temperature and dissolved oxygen stress in two Southern California stream pools. Journal of Fish Biology, 50(1), 50–67.

    Article  Google Scholar 

  • Menon, A. G. K., Singh, H. R., Kumar, N. (2000). Present eco-status of cold water fish and fisheries. In H. R. Singh & W. S. Lakra (Eds.), Coldwater fish and fisheries (pp. 1–36). New Delhi: Narendra Publishing House.

    Google Scholar 

  • Miller, N. A., & Stillman, J. H. (2012). Physiological optima and critical limits. Nature Education Knowledge, 3(10), 1.

    Google Scholar 

  • Nelson, K. C., & Palmer, M. A. (2007). Stream temperature surges under urbanization and climate change: Data and responses. Journal of the American Water Resources Association, 43(2), 440–452.

    Article  Google Scholar 

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology Systematics, 32, 333–365.

    Article  Google Scholar 

  • Pluhowski, E. J. (1970). Urbanization and its effect on the temperature of streams on Long Island, New York. U.S. Geological Survey, Professional Paper 627-D, New York City, NY.

    Google Scholar 

  • Poff, L. N., Allan, D., Bain, M. B., Karr, J. R., Prestaggard, K. L., Richter, B. D., et al. (1997). The natural flow regime: a paradigm for river conservation and restoration. BioScience, 47, 769–784.

    Article  Google Scholar 

  • Poole, G. C., & Berman, C. H. (2001). An ecological perspective on in-stream temperature: Natural heat dynamics and mechanisms of human-caused thermal degradation. Environmental Management, 27(6), 787–802.

    Article  Google Scholar 

  • Power, M. E., Sun, A., Parker, M., Dietrich., W. E., Wotton J. T. (1995). Hydraulic food-chain models: An approach to the study of web dynamics in large rivers. BioScience 45, 159–167.

    Google Scholar 

  • Qureshi, T. A., Qureshi, T. A., Chalkoo, S. R., Borana, K., & Manohar, S. (2010). Effect of thermal pollution on the hydrological parameters of river Jhelum (J & K). Current World Environment, 5(2), 292–2827.

    Google Scholar 

  • Resh, V. H., Brown, A. V., Covich, A. P., Gurtz, M. E., Li, H. W., Minshall, G. W., et al. (1988). The role of disturbance in stream ecology. Journal of the North American Benthological Society, 7, 433–455.

    Article  Google Scholar 

  • Spilsbury, R., & Spilsbury, L. (2008). The pros and cons of water power. New York: Rosen Central Publication.

    Google Scholar 

  • Toossie, R. (2008). Energy and the environment: Sources, technologies, and impacts. Irvine: VerVe Publishers. ISBN 978-1-4276-1867-2.

    Google Scholar 

  • UoCS (Union of Concerned Scientists). (2014). How hydroelectric energy works, environmental concerns. Access: May 06, 2014. http://www.ucsusa.org/clean_energy/our-energy-choices/renewable-energy/how-hydroelectricenergy.html

  • US Department of Interior, Bureau of Reclamation, Power Resources Office. (2005). Hydroelectric power. http://www.usbr.gov/power/edu/pamphlet.pdf

  • Wang, L., & Kanehl, P. (2003). Influences of watershed urbanization and instream habitat on macroinvertebrates in cold water stream. Journal of the American Water Resources Association, 39(5), 1181–1196.

    Article  Google Scholar 

  • Yüksek, O., & Kaygusuz, K. (2006). Small hydropower plants as a new and renewable energy source. Energy Sources, Part B: Economics, Planning, and Policy, 1(3), 279–290.

    Article  Google Scholar 

  • Zwikael, O., & Smyrk, J. (2011). The input-transform-outcome (ITO) model of a project. In O. Zwikael & J. Smyrk (Eds.), Project management for the creation of organisational value (pp. 11–35). London: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaeddin Bobat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bobat, A. (2015). Thermal Pollution Caused by Hydropower Plants. In: Bilge, A., Toy, A., Günay, M. (eds) Energy Systems and Management. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-16024-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16024-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16023-8

  • Online ISBN: 978-3-319-16024-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics