Modelling environmental semantics is a prerequisite for model and data interoperabilty and reuse, both essential for integrated modelling. This paper previews a landscape where integrated modelling activities are performed in a virtual environmental information space, and identifies challenges imposed by the nature of integrated modelling tasks and new technology drivers such as sensor networks, big data and high-performance computing. A set of requirements towards a universal framework for sharing environmental data and models is presented. The approach is demonstrated in the case study of a semantic modelling system for wildlife monitoring, management and conservation.


Environmental semantics Intergrated modelling Environmental Information Space Service orientation Internet of the Things 


  1. 1.
    Rizzoli, A.E., Athanasiadis, I.N., Villa, F.: Delivering environmental knowledge: a semantic approach. In: Proc. 21st International Conference on Informatics for Environmental Protection (EnviroInfo 2007), pp. 43–50. Shaker Verlag, Warsaw (2007)Google Scholar
  2. 2.
    UN Earth Summit: Agenda 21. Department of public information, United Nations, Rio de Janeiro, Brazil (1992)Google Scholar
  3. 3.
    Athanasiadis, I.N., Villa, F.: A roadmap to domain specific programming languages for environmental modeling: key requirements and concepts. In: Proc. 2013 ACM workshop on Domain-Specific Modeling, pp. 27–32. ACM (2013)Google Scholar
  4. 4.
    Rizzoli, A., Young, W.: Delivering environmental decision support systems: Software tools and techniques. Environmental Modelling & Software 12, 237–249 (1997)CrossRefGoogle Scholar
  5. 5.
    Denzer, R.: Generic integration of environmental decision support systems - state-of-the-art. Environmental Modelling & Software 20, 1217–1223 (2005)CrossRefGoogle Scholar
  6. 6.
    Athanasiadis, I.N.: Towards a virtual enterprise architecture for the environmental sector. In: Protogeros, N. (ed.) Agent and web service technologies in virtual enterprises, pp. 256–266. Information Science Reference, Hershey (2007)Google Scholar
  7. 7.
    Villa, F., Athanasiadis, I.N., Rizzoli, A.E.: Modelling with knowledge: a review of emerging semantic approaches to environmental modelling. Environmental Modelling and Software 24, 577–587 (2009)CrossRefGoogle Scholar
  8. 8.
    Villa, F., et al.: Thinklab software repository (2013)Google Scholar
  9. 9.
    Villa, F., Bagstad, K.J., Voigt, B., Johnson, G.W., Portela, R., Honzak, M., Batker, D.: A methodology for adaptable and robust ecosystem services assessment. PLoS ONE 9, e91001 (2014)Google Scholar
  10. 10.
    Athanasiadis, I.N., Villa, F., Examiliotou, G., Iliopoulos, Y., Mertzanis, Y.: Towards a semantic framework for wildlife modeling. In: Marx Gomez, J., et al. (eds.) Proc. 28th International Conference on Informatics for Environmental Protection (Enviroinfo 2014), pp. 287–292. BIS-Verlag, Oldenburg (2014)Google Scholar
  11. 11.
    OGC: Sensor Observation Service, Open Geospatial Consortium Standard (2007)Google Scholar
  12. 12.
    OGC: Web Coverage Service, Open Geospatial Consortium Standard (2012)Google Scholar
  13. 13.
    Pollino, C.A., Woodberry, O., Nicholson, A., Korb, K., Hart, B.T.: Parameterisation and evaluation of a bayesian network for use in an ecological risk assessment. Environmental Modelling & Software 22, 1140–1152 (2007)CrossRefGoogle Scholar
  14. 14.
    Hirzel, A.H., Hausser, J., Chessel, D., Perrin, N.: Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83, 2027–2036 (2002)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Ioannis N. Athanasiadis
    • 1
  1. 1.Democritus University of ThraceXanthiGreece

Personalised recommendations