Skip to main content

Assessment of Vegetation Trends in Drylands from Time Series of Earth Observation Data

  • Chapter
Book cover Remote Sensing Time Series

Abstract

This chapter summarizes approaches to the detection of dryland vegetation change and methods for observing spatio-temporal trends from space. An overview of suitable long-term Earth Observation (EO) based datasets for assessment of global dryland vegetation trends is provided and a status map of contemporary greening and browning trends for global drylands is presented. The vegetation metrics suitable for per-pixel temporal trend analysis is discussed, including seasonal parameterisation and the appropriate choice of trend indicators. Recent methods designed to overcome assumptions of long-term linearity in time series analysis (Breaks For Additive Season and Trend(BFAST)) are discussed. Finally, the importance of the spatial scale when performing temporal trend analysis is introduced and a method for image downscaling (Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM)) is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeel Z, World Resources Institute (2005) Ecosystems and human well-being: desertification synthesis: a report of the Millennium Ecosystem Assessment. World Resources Institute, Washington, DC

    Google Scholar 

  • Alcaraz-Segura D, Chuvieco E, Epstein HE, Kasischke ES, Trishchenko A (2010) Debating the greening vs. browning of the North American boreal forest: differences between satellite datasets. Glob Chang Biol 16:760–770

    Article  Google Scholar 

  • Anyamba A, Tucker CJ (2005) Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J Arid Environ 63:596–614

    Article  Google Scholar 

  • Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating absorbed photosynthetic radiation and leaf-area index from spectral reflectance in wheat. Agron J 76:300–306

    Article  Google Scholar 

  • Atkinson PM (2013) Downscaling in remote sensing. Int J Appl Earth Obs Geoinf 22:106–114

    Article  Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24:223–234

    Article  Google Scholar 

  • Barreto-Munoz A (2013) Multi-sensor vegetation index and land surface phenology earth science data records in support of global change studies: data quality challenges and data explorer system. Ph.D. thesis, The University of Arizona, Tucson, AZ, USA

    Google Scholar 

  • Beck HE, McVicar TR, van Dijk AIJM, Schellekens J, de Jeu RAM, Bruijnzeel LA (2011) Global evaluation of four AVHRR-NDVI data sets: intercomparison and assessment against Landsat imagery. Remote Sens Environ 115:2547–2563

    Article  Google Scholar 

  • Brown ME, Pinzon JE, Didan K, Morisette JT, Tucker CJ (2006) Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-Vegetation, Sea-WiFS, MODIS, and Landsat ETM+ sensors. IEEE Trans Geosci Remote Sens 44:1787–1793

    Article  Google Scholar 

  • Cook BI, Pau S (2013) A global assessment of long-term greening and browning trends in pasture lands using the GIMMS LAI3g dataset. Remote Sens 5:2492–2512

    Article  Google Scholar 

  • Cracknell AP (2001) The exciting and totally unanticipated success of the AVHRR in applications for which it was never intended. Calibration Charact Satell Sens Accuracy Deriv Phys Parameters 28:233–240

    Google Scholar 

  • de Beurs KM, Henebry GM (2005) Land surface phenology and temperature variation in the International Geosphere-Biosphere Program high-latitude transects. Glob Chang Biol 11:779–790

    Article  Google Scholar 

  • de Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115:692–702

    Article  Google Scholar 

  • de Jong R, Verbesselt J, Zeileis A, Schaepman ME (2013) Shifts in global vegetation activity trends. Remote Sens 5:1117–1133

    Article  Google Scholar 

  • Didan K (2010) Multi-satellite earth science data record for studying global vegetation trends and changes. In: Proceedings of the 2010 international geoscience and remote sensing symposium, Honolulu, HI, USA, 25–30 July 2010, IEEE International, pp 25–30

    Google Scholar 

  • Donohue RJ, McVicar TR, Roderick ML (2009) Climate-related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006. Glob Chang Biol 15:1025–1039

    Article  Google Scholar 

  • Eklundh L, Olsson L (2003) Vegetation index trends for the African Sahel 1982–1999. Geophys Res Lett 30:1430. doi:10.1029/2002GL016772, 8

  • El Saleous NZ, Vermote EF, Justice CO, Townshend JRG, Tucker CJ, Goward SN (2000) Improvements in the global biospheric record from the Advanced Very High Resolution Radiometer (AVHRR). Int J Remote Sens 21:1251–1277

    Article  Google Scholar 

  • Fensholt R, Proud SR (2012) Evaluation of earth observation based global long term vegetation trends – comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ 119:131–147

    Article  Google Scholar 

  • Fensholt R, Rasmussen K (2011) Analysis of trends in the Sahelian ‘rain-use efficiency’ using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens Environ 115:438–451

    Article  Google Scholar 

  • Fensholt R, Sandholt I, Rasmussen MS (2004) Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens Environ 91:490–507

    Article  Google Scholar 

  • Fensholt R, Sandholt I, Rasmussen MS, Stisen S, Diouf A (2006) Evaluation of satellite based primary production modelling in the semi-arid Sahel. Remote Sens Environ 105:173–188

    Article  Google Scholar 

  • Fensholt R, Rasmussen K, Nielsen TT, Mbow C (2009) Evaluation of earth observation based long term vegetation trends – intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens Environ 113:1886–1898

    Article  Google Scholar 

  • Fensholt R, Sandholt I, Proud SR, Stisen S, Rasmussen MO (2010) Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geo-stationary data. Int J Remote Sens 31:6163–6187

    Article  Google Scholar 

  • Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Scholes RJ, Le QB, Bondeau A, Eastman R, Epstein H, Gaughan AE, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K (2012) Greenness in semi-arid areas across the globe 1981–2007 – an Earth Observing Satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158

    Article  Google Scholar 

  • Fensholt R, Rasmussen K, Kaspersen P, Huber S, Horion S, Swinnen E (2013) Assessing land degradation/recovery in the African Sahel from long-term earth observation based primary productivity and precipitation relationships. Remote Sens 5:664–686

    Article  Google Scholar 

  • Frey RA, Ackerman SA, Liu YH, Strabala KI, Zhang H, Key JR, Wang XG (2008) Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J Atmos Ocean Technol 25:1057–1072

    Article  Google Scholar 

  • Fuller DO (1998) Trends in NDVI time series and their relation to rangeland and crop production in Senegal, 1987–1993. Int J Remote Sens 19:2013–2018

    Article  Google Scholar 

  • Ganguly S, Friedl MA, Tan B, Zhang XY, Verma M (2010) Land surface phenology from MODIS: characterization of the Collection 5 global land cover dynamics product. Remote Sens Environ 114:1805–1816

    Article  Google Scholar 

  • Gao F, Masek J, Schwaller M, Hall F (2006) On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans Geosci Remote Sens 44:2207–2218

    Article  Google Scholar 

  • Gates DM, Keegan HJ, Schleter JC, Weidner VR (1965) Spectral properties of plants. Appl Opt 4(1):11–20

    Article  Google Scholar 

  • Goward SN, Huemmrich KF (1992) Vegetation canopy Par absorptance and the normalized difference vegetation index – an assessment using the Sail model. Remote Sens Environ 39:119–140

    Article  Google Scholar 

  • Hellden U, Tottrup C (2008) Regional desertification: a global synthesis. Glob Planet Chang 64:169–176

    Article  Google Scholar 

  • Herrmann SM, Tappan GG (2013) Vegetation impoverishment despite greening: a case study from central Senegal. J Arid Environ 90:55–66

    Article  Google Scholar 

  • Herrmann SM, Anyamba A, Tucker CJ (2005) Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob Environ Chang Hum Policy Dimens 15:394–404

    Article  Google Scholar 

  • Heumann BW, Seaquist JW, Eklundh L, Jonsson P (2007) AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens Environ 108:385–392

    Article  Google Scholar 

  • Hickler T, Eklundh L, Seaquist JW, Smith B, Ardo J, Olsson L, Sykes MT, Sjostrom M (2005) Precipitation controls Sahel greening trend. Geophys Res Lett 32:L21415. doi:10.1029/2005GL024370

  • Hilker T, Wulder MA, Coops NC, Seitz N, White JC, Gao F, Masek JG, Stenhouse G (2009) Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sens Environ 113:1988–1999

    Article  Google Scholar 

  • Hirsch RM, Slack JR (1984) A nonparametric trend test for seasonal data with serial dependence. Water Resour Res 20:727–732

    Article  Google Scholar 

  • Hoaglin DC, Mosteller F, Tukey JW (2000) In: Wiley classics library (ed) Understanding robust and exploratory data analysis. Wiley, New York

    Google Scholar 

  • Holben BN (1986) Characteristics of maximum-value composite images from temporal Avhrr data. Int J Remote Sens 7:1417–1434

    Article  Google Scholar 

  • Huete AR, Jackson RD, Post DF (1985) Spectral response of a plant canopy with different soil backgrounds. Remote Sens Environ 17:37–53

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Article  Google Scholar 

  • Hwang T, Song CH, Bolstad PV, Band LE (2011) Downscaling real-time vegetation dynamics by fusing multi-temporal MODIS and Landsat NDVI in topographically complex terrain. Remote Sens Environ 115:2499–2512

    Article  Google Scholar 

  • Ivits E, Cherlet M, Toth G, Sommer S, Mehl W, Vogt J, Micale F (2012) Combining satellite derived phenology with climate data for climate change impact assessment. Glob Planet Chang 88–89:85–97

    Article  Google Scholar 

  • Jeyaseelan AT, Roy PS, Young SS (2007) Persistent changes in NDVI between 1982 and 2003 over India using AVHRR GIMMS (Global Inventory Modeling and Mapping Studies) data. Int J Remote Sens 28:4927–4946

    Article  Google Scholar 

  • Jonsson P, Eklundh L (2002) Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geosci Remote Sens 40:1824–1832

    Article  Google Scholar 

  • Jonsson P, Eklundh L (2004) TIMESAT – a program for analyzing time-series of satellite sensor data. Comput Geosci 30:833–845

    Article  Google Scholar 

  • Kidwell K (1991) NOAA polar orbital data user’s guide. NOAA NESDIS technical report. USDoC, Washington, DC

    Google Scholar 

  • Los SO (1998) Estimation of the ratio of sensor degradation between NOAA AVHRR channels 1 and 2 from monthly NDVI composites. IEEE Trans Geosci Remote Sens 36:206–213

    Article  Google Scholar 

  • Lykke AM, Kristensen MK, Ganaba S (2004) Valuation of local use and dynamics of 56 woody species in the Sahel. Biodivers Conserv 13:1961–1990

    Article  Google Scholar 

  • Monteith JL (1972) Solar-radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766

    Article  Google Scholar 

  • Myneni RB, Pinzón JE (2013) Special issue “Monitoring Global Vegetation with AVHRR NDVI3g Data (1981–2011)”. Remote sensing special issue. http://www.mdpi.com/journal/remotesensing/special_issues/monitoring_global. Accessed 30 Nov 2014

  • Myneni RB, Hall FG, Sellers PJ, Marshak AL (1995) The interpretation of spectral vegetation indexes. IEEE Trans Geosci Remote Sens 33:481–486

    Article  Google Scholar 

  • Nagol JR, Vermote EF, Prince SD (2009) Effects of atmospheric variation on AVHRR NDVI data. Remote Sens Environ 113:392–397

    Article  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  Google Scholar 

  • Olsson L, Eklundh L, Ardo J (2005) A recent greening of the Sahel – trends, patterns and potential causes. J Arid Environ 63:556–566

    Article  Google Scholar 

  • Paruelo JM, Epstein HE, Lauenroth WK, Burke IC (1997) ANPP estimates from NDVI for the Central Grassland Region of the United States. Ecology 78:953–958

    Article  Google Scholar 

  • Pedelty J, Devadiga S, Masuoka EB, Pinzon JM, Tucker CJ, Vermote EF et al (2007) Generating a long-term land data record from the AVHRR and MODIS instruments. In: Proceedings of the 2007 international geoscience and remote sensing symposium, 2007. IGARSS 2007, IEEE International, pp 1021–1025

    Google Scholar 

  • Pinzon JE, Tucker CJ (2014) A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens 6:6929–6960

    Article  Google Scholar 

  • Pinzon JE, Brown ME, Tucker CJ (2005) Hilbert-Huang transform and its applications. In: Huang NE, Shen SSP (eds) Interdisciplinary mathematical sciences, vol 5. World Scientific, Singapore/Hackensack/London

    Google Scholar 

  • Prince SD (1991) A model of regional primary production for use with coarse resolution satellite data. Int J Remote Sens 12:1313–1330

    Article  Google Scholar 

  • Prince SD, Goward SN (1995) Global primary production: a remote sensing approach. J Biogeogr 22:815–835

    Article  Google Scholar 

  • Prince SD, Justice CO (1991) Coarse resolution remote-sensing of the Sahelian environment – editorial. Int J Remote Sens 12:1137–1146

    Article  Google Scholar 

  • Prince SD, Wessels KJ, Tucker CJ, Nicholson SE (2007) Desertification in the Sahel: a reinterpretation of a reinterpretation. Glob Chang Biol 13:1308–1313

    Article  Google Scholar 

  • Rao CRN, Chen J (1995) Intersatellite calibration linkages for the visible and near-infrared channels of the advanced very high-resolution radiometer on the Noaa-7, Noaa-9, and Noaa-11 spacecraft. Int J Remote Sens 16:1931–1942

    Article  Google Scholar 

  • Rasmussen K, Fensholt R, Fog B, Rasmussen LV, Yanogo I (2014) Explaining NDVI trends in northern Burkina Faso. Geografisk Tidsskr Dan J Geogr 114:17–24

    Article  Google Scholar 

  • Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens 6:1335–1372

    Article  Google Scholar 

  • Stowe LL (1991) Cloud and aerosol products at Noaa Nesdis. Glob Planet Chang 90:25–32

    Article  Google Scholar 

  • Swinnen E, Veroustraete F (2008) Extending the SPOT-VEGETATION NDVI time series (1998–2006) back in time with NOAA-AVHRR data (1985–1998) for southern Africa. IEEE Trans Geosci Remote Sens 46:558–572

    Article  Google Scholar 

  • Thenkabail PS, Lyon JG, Huete A (2012) Hyperspectral remote sensing of vegetation. CRC Press, Boca Raton

    Google Scholar 

  • Tian F, Wang Y, Fensholt R, Wang K, Zhang L, Huang Y (2013) Mapping and evaluation of NDVI trends from synthetic time series obtained by blending Landsat and MODIS data around a coalfield on the loess plateau. Remote Sens 5:4255–4279

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Tucker CJ, Vanpraet CL, Sharman MJ, Vanittersum G (1985) Satellite remote-sensing of total herbaceous biomass production in the senegalese sahel – 1980–1984. Remote Sens Environ 17:233–249

    Article  Google Scholar 

  • Tucker CJ, Dregne HE, Newcomb WW (1991) Expansion and contraction of the Sahara desert from 1980 to 1990. Science 253:299–301

    Article  Google Scholar 

  • Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498

    Article  Google Scholar 

  • Vanbelle G, Hughes JP (1984) Nonparametric-tests for trend in water-quality. Water Resour Res 20:127–136

    Article  Google Scholar 

  • Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010a) Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ 114:106–115

    Article  Google Scholar 

  • Verbesselt J, Hyndman R, Zeileis A, Culvenor D (2010b) Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens Environ 114:2970–2980

    Article  Google Scholar 

  • Verbesselt J, Zeileis A, Herold M (2012) Near real-time disturbance detection using satellite image time series. Remote Sens Environ 123:98–108

    Article  Google Scholar 

  • Vermote E, Kaufman YJ (1995) Absolute calibration of Avhrr visible and near-infrared channels using ocean and cloud views. Int J Remote Sens 16:2317–2340

    Article  Google Scholar 

  • Vermote EF, Saleous NZ (2006) Calibration of NOAA16 AVHRR over a desert site using MODIS data. Remote Sens Environ 105:214–220

    Article  Google Scholar 

  • Vermote EF, El Saleous NZ, Justice CO (2002) Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens Environ 83:97–111

    Article  Google Scholar 

  • Vermote E, Justice C, Csiszar I, Eidenshink J, Myneni R, Baret F, Masuoka E, Wolfe R, Devadiga S (2009) A terrestrial surface climate data record for global change studies. Eos Trans. AGU 90(52), Fall Meet. Suppl., Abstract IN42A-08, 2009

    Google Scholar 

  • Wessels KJ, van den Bergh F, Scholes RJ (2012) Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens Environ 125:10–22

    Article  Google Scholar 

  • Wu A, Xiaoxiong X, Changyong C, Amit A (2008) Monitoring MODIS calibration stability of visible and near-IR bands from observed top-of-atmosphere BRDF-normalized reflectances over Libyan Desert and Antarctic surfaces. In: Proceedings of SPIE 7081, Earth Observing Systems XIII, 708113 August 28. doi:10.1117/12.795296

  • Zhang XY, Friedl MA, Schaaf CB (2006) Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements. J Geophys Res. doi:10.1029/2006JG000217

  • Zhao MS, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943

    Article  Google Scholar 

  • Zhao X, Liang SL, Liu SH, Yuan WP, Xiao ZQ, Liu Q, Cheng J, Zhang XT, Tang HR, Zhang X, Liu Q, Zhou GQ, Xu S, Yu K (2013) The Global Land Surface Satellite (GLASS) remote sensing data processing system and products. Remote Sens 5:2436–2450

    Article  Google Scholar 

  • Zhu ZC, Bi J, Pan YZ, Ganguly S, Anav A, Xu L, Samanta A, Piao SL, Nemani RR, Myneni RB (2013) Global data sets of vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sens 5:927–948

    Article  Google Scholar 

Download references

Acknowledgements

This book chapter is written within the frame of the project entitled Earth Observation based Vegetation productivity and Land Degradation Trends in Global Drylands. The project is funded by the Danish Council for Independent Research (DFF) Sapere Aude programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Fensholt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fensholt, R. et al. (2015). Assessment of Vegetation Trends in Drylands from Time Series of Earth Observation Data. In: Kuenzer, C., Dech, S., Wagner, W. (eds) Remote Sensing Time Series. Remote Sensing and Digital Image Processing, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-15967-6_8

Download citation

Publish with us

Policies and ethics