Skip to main content

Abstract

Cardiac dysfunction precipitates changes in vascular function, blood volume, and neurohormonal status. These changes serve as compensatory mechanisms to help maintain cardiac output and arterial blood pressure. However, these compensatory changes over months and years can worsen cardiac function. Overall, the changes in cardiac function associated with heart failure (HF) result in a decrease in cardiac output. This results from a decline in stroke volume that is due to systolic dysfunction, diastolic dysfunction, or a combination of the two. Systolic dysfunction results from a loss of intrinsic inotropy (contractility), most likely due to alterations in signal transduction mechanisms responsible for regulating inotropy. Systolic dysfunction can also result from the loss of viable, contracting muscle as occurs following acute myocardial infarction (MI). Diastolic dysfunction refers to the diastolic properties of the ventricle and occurs when the ventricle becomes less compliant (i.e., “stiffer”), which impairs ventricular filling. Both systolic and diastolic dysfunctions result in a higher ventricular end-diastolic pressure, which serves as a compensatory mechanism by utilizing the Frank–Starling mechanism to augment stroke volume. In this chapter, we discuss the various types of cardiac insults and morbidities/conditions that can cause myocardial damage (directly or indirectly) in humans, thereby precipitating chronic systolic HF. Particular focus is given to the pathophysiological mechanisms by which they initiate or aggravate the development of clinical HF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frantz S, Bauersachs J, Ertl G. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res. 2009;81(3):474–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Miller A. Aldosterone antagonism in heart failure. Vasc Health Risk Manag. 2007;3(5):605–9.

    PubMed Central  PubMed  Google Scholar 

  3. Sun Y. Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res. 2009;81(3):482–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Daskalopoulos E, Janssen B, Blankesteijn W. Myofibroblasts in the infarct area: concepts and challenges. Microsc Microanal Off J Microsc Soc Am Microb Anal Soc Microsc Soc Can. 2012;18(1):35–49.

    CAS  Google Scholar 

  5. Mill J, Stefanon I, dos Santos L, Baldo M. Remodeling in the ischemic heart: the stepwise progression for heart failure. Braz J Med Biol Res. 2011;44(9):890–8.

    CAS  PubMed  Google Scholar 

  6. Abbate A, Bussani R, Amin M, Vetrovec G, Baldi A. Acute myocardial infarction and heart failure: role of apoptosis. Int J Biochem Cell Biol. 2006;38(11):1834–40.

    CAS  PubMed  Google Scholar 

  7. Baines C. How and when do myocytes die during ischemia and reperfusion: the late phase. J Cardiovasc Pharmacol Ther. 2011;16(3–4):239–43.

    CAS  PubMed  Google Scholar 

  8. Cleland JGF, Torabi A, Khan NK. Epidemiology and management of heart failure and left ventricular systolic dysfunction in the aftermath of a myocardial infarction. Heart. 2005;91:ii7–13.

    PubMed Central  PubMed  Google Scholar 

  9. Cleland J, Torabi A, Khan N. Epidemiology and management of heart failure and left ventricular systolic dysfunction in the aftermath of a myocardial infarction. Heart (Br Card Soc). 2005;91(Suppl):2ii43.

    Google Scholar 

  10. Dedobbeleer C, Melot C, Renard M. C-reactive protein increase in acute myocardial infarction. Acta Cardiol. 2004;59(3):291–6.

    PubMed  Google Scholar 

  11. Frangogiannis N. The immune system and the remodeling infarcted heart: cell biological insights and therapeutic opportunities. J Cardiovasc Pharmacol. 2014;63(3):185–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Funaro S, Galiuto L, Boccalini F, Cimino S, Canali E, Evangelio F, Agati L. Determinants of microvascular damage recovery after acute myocardial infarction: results from the acute myocardial infarction contrast imaging (AMICI) multi-centre study. Eur J Echocardiogr J Work Group Echocardiogr Eur Soc Cardiol. 2011;12(4):306–12.

    Google Scholar 

  13. Gajarsa JJ, Kloner RA. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev. 2011;16(1):13–21.

    PubMed  Google Scholar 

  14. Gallagher G, Jackson C, Hunyor S. Myocardial extracellular matrix remodeling in ischemic heart failure. Front Biosci J Virtual Libr. 2007;12:1410–9.

    CAS  Google Scholar 

  15. Hung J, Teng T, Finn J, Knuiman M, Briffa T, Stewart S, Hobbs M. Trends from 1996 to 2007 in incidence and mortality outcomes of heart failure after acute myocardial infarction: a population-based study of 20,812 patients with first acute myocardial infarction in Western Australia. J Am Heart Assoc. 2013;2(5):e000172.

    PubMed Central  PubMed  Google Scholar 

  16. Jelani A, Jugdutt B. STEMI and heart failure in the elderly: role of adverse remodeling. Heart Fail Rev. 2010;15(5):513–21.

    PubMed  Google Scholar 

  17. Jivraj N, Phinikaridou A, Shah A, Botnar R. Molecular imaging of myocardial infarction. Basic Res Cardiol. 2014;109(1):1–16.

    Google Scholar 

  18. Kaul P, Ezekowitz J, Armstrong P, Leung B, Savu A, Welsh R, McAlister F. Incidence of heart failure and mortality after acute coronary syndromes. Am Heart J. 2013;165(3):379–85.e2.

    PubMed  Google Scholar 

  19. Kemp C, Conte J. The pathophysiology of heart failure. Cardiovasc Pathol Off J Soc Cardiovasc Pathol. 2012;21(5):365–71.

    CAS  Google Scholar 

  20. Kramer C, Sinusas A, Sosnovik D, French B, Bengel F. Multimodality imaging of myocardial injury and remodeling. J Nucl Med Off Publ Soc Nucl Med. 2010;51(Suppl):1107S–21.

    Google Scholar 

  21. Minicucci M, Azevedo P, Polegato B, Paiva S, Zornoff L. Heart failure after myocardial infarction: clinical implications and treatment. Clin Cardiol. 2011;34(7):410–4.

    PubMed  Google Scholar 

  22. Nilsson L, Szymanowski A, Swahn E, Jonasson L. Soluble TNF receptors are associated with infarct size and ventricular dysfunction in ST-elevation myocardial infarction. PLoS ONE. 2013;8(2):e55477.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Orogo A, Gustafsson Å. Cell death in the myocardium: my heart won’t go on. IUBMB Life. 2013;65(8):651–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Ostrowski S, Pedersen S, Jensen J, Mogelvang R, Johansson P. Acute myocardial infarction is associated with endothelial glycocalyx and cell damage and a parallel increase in circulating catecholamines. Crit Care (Lond Engl). 2013;17(1):R32.

    Google Scholar 

  25. Rathi S, Deedwania P. The epidemiology and pathophysiology of heart failure. Med Clin N Am. 2012;96(5):881–90.

    CAS  PubMed  Google Scholar 

  26. See F, Kompa A, Martin J, Lewis D, Krum H. Fibrosis as a therapeutic target post-myocardial infarction. Curr Pharm Des. 2005;11(4):477–87.

    CAS  PubMed  Google Scholar 

  27. Shih H, Lee B, Lee RJ, Boyle AJ. The aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol JACC. 2010;57(1):9–17. doi:10.1016/j.jacc.2010.08.623.

    Google Scholar 

  28. Struthers A. Pathophysiology of heart failure following myocardial infarction. Heart (Br Card Soc). 2005;91(Suppl):2ii43.

    Google Scholar 

  29. Thomas K, Velazquez E. Therapies to prevent heart failure post-myocardial infarction. Curr Heart Fail Rep. 2005;2(4):174–82.

    CAS  PubMed  Google Scholar 

  30. Torabi A, Cleland J, Khan N, Loh P, Clark A, Alamgir F, Goode K. The timing of development and subsequent clinical course of heart failure after a myocardial infarction. Eur Heart J. 2008;29(7):859–70.

    PubMed  Google Scholar 

  31. Velagaleti RS, Pencina MJ, Murabito JM, et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation. 2008;118:2057.

    PubMed Central  PubMed  Google Scholar 

  32. Zalewski J, Durak M, Lech P, Gajos G, Undas A, Nessler J, Zmudka K. Platelet activation and microvascular injury in patients with ST-segment elevation myocardial infarction. Kardiol Pol. 2012;70(7):677–84.

    PubMed  Google Scholar 

  33. Zhang T, Zhao L, Cao X, Qi L, Wei G, Liu J, Li X. Bioinformatics analysis of time series gene expression in left ventricle (LV) with acute myocardial infarction (AMI). Gene. 2014;543(2):259–67.

    CAS  PubMed  Google Scholar 

  34. Zornoff LAM, Paiva SAR, Duarte DR, et al. Ventricular remodeling after myocardial infarction: concepts and clinical implications. Arq Bras Cardiol. 2009;92:157–64.

    Google Scholar 

  35. Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P. The burden of adult hypertension in the United States 1999 to 2000: a rising tide. Hypertension. 2004;44:398–404.

    CAS  PubMed  Google Scholar 

  36. Hage FG. Guidelines in review: 2013 ACCF/AHA guideline for the management of heart failure. J Nucl Cardiol. 2013;20:397–9.

    Google Scholar 

  37. Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure. JAMA. 1996;275:1557–62.

    CAS  PubMed  Google Scholar 

  38. Wilhelmsen L, Rosengren A, Eriksson H, et al. Heart failure in the general population of men–morbidity, risk factors and prognosis. J Intern Med. 2001;249:253–61.

    CAS  PubMed  Google Scholar 

  39. Lloyd-Jones DM, Larson MG, Leip EP, et al. Lifetime risk for developing congestive heart failure: the Framingham heart study. Circulation. 2002;106:3068–72.

    PubMed  Google Scholar 

  40. Georgiopoulou W, Kalogeropoulos AP, Butler J. Heart failure in hypertension: prevention and treatment. Drugs. 2012;72(10):1373–98.

    CAS  PubMed  Google Scholar 

  41. Weber MA. Recently published hypertension guidelines of the JNC 8 panelists, the American Society of Hypertension/International Society of Hypertension and other major organizations: introduction to a focus issue of the Journal of Clinical Hypertension. J Clin Hypertens (Greenwich). 2014;16:241–5.

    Google Scholar 

  42. Kaur R, Khanna N. Pathophysiology and risk factors related to hypertension and its cure using herbal drugs. Spatula DD. 2012;2(4):245–56. doi:10.5455/spatula.20121223101221.

    Google Scholar 

  43. Izzo JL. Systolic hypertension, arterial stiffness, and vascular damage: role of the renin-angiotensin system. Blood Press Monit. 2000;5:S7–11.

    PubMed  Google Scholar 

  44. Wilkoff BL. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128:810–52.

    Google Scholar 

  45. Boineau RC, Gottdiener J. Predictors of congestive heart failure in the elderly: the cardiovascular health study. J Am Coll Cardiol. 2000;35:1628–37.

    Google Scholar 

  46. North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res. 2012;110:1097–108.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Bock JS, Gottlieb SS. Cardiorenal syndrome: new perspectives. Circulation. 2010;121:2592.

    PubMed  Google Scholar 

  48. Butler J, Chirovsky D, Phatak H, McNeill A, Cody R. Renal function, health outcomes, and resource utilization in acute heart failure: a systematic review. Circ Heart Fail. 2010;3:726–45.

    PubMed  Google Scholar 

  49. Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J, ADHERE Scientific Advisory Committee and Investigators. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13(6):422.

    PubMed  Google Scholar 

  50. McAlister FA, Ezekowitz J, Tonelli M, Armstrong PW. Renal insufficiency and heart failure: prognostic and therapeutic implications from a prospective cohort study. Circulation. 2004;109(8):1004.

    PubMed  Google Scholar 

  51. Smith GL, Lichtman JH, Bracken MB, Shlipak MG, Phillips CO, DiCapua P, Krumholz HM. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J Am Coll Cardiol. 2006;47(10):1987.

    PubMed  Google Scholar 

  52. U.S. Renal Data System. USRDS 2013 Annual Data Report: Atlas of chronic kidney disease and end-stage renal disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2013.

    Google Scholar 

  53. Forman DE, Butler J, Wang Y, Abraham WT, O’Connor CM, Gottlieb SS, Loh E, Massie BM, Rich MW, Stevenson LW, Young JB, Krumholz HM. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol. 2004;43(1):61.

    PubMed  Google Scholar 

  54. Hillege HL, Nitsch D, Pfeffer MA, Swedberg K, McMurray JJ, Yusuf S, Granger CB, Michelson EL, Ostergren J, Cornel JH, de Zeeuw D, Pocock S, van Veldhuisen DJ, Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) Investigators. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation. 2006;113(5):671.

    PubMed  Google Scholar 

  55. Le TH, Crowley SD, Gurley SB, Coffman TM. Chapter 15. The renin-angiotensin system. In: Alpern RJ, Moe OW, Caplan M, editors. Seldin and Giebisch’s the kidney. 5th ed. Waltham: Elsevier; 2013.

    Google Scholar 

  56. Mann DL. Chapter 25 pathophysiology of heart failure. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 9th ed. Philadelphia: Elsevier Saunders; 2012.

    Google Scholar 

  57. Parker BD, Lx JH, et al. Chapter 16. Renal disease. In: McPhee SJ, Hammer GD, editors. Pathophysiology of disease. 6th ed. New York: McGraw-Hill; 2010.

    Google Scholar 

  58. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341:577.

    CAS  PubMed  Google Scholar 

  59. Aggarwal A, Esler MD, Socratous F, Kaye DM. Evidence for functional presynaptic alpha-2 adrenoceptors and their down-regulation in human heart failure. J Am Coll Cardiol. 2001;37:1246.

    CAS  PubMed  Google Scholar 

  60. Ronco C, Haapio M, House AA, et al. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527.

    PubMed  Google Scholar 

  61. Francis GS, McDonald KM. Left ventricular hypertrophy: an initial response to myocardial injury. Am J Cardiol. 1992;69:3G.

    CAS  PubMed  Google Scholar 

  62. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodeling. Lancet. 2006;367(9507):35.

    Google Scholar 

  63. Sadoshima J, Izumo S. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res. 1993;73:413.

    CAS  PubMed  Google Scholar 

  64. Lund LH, Benson L, Dahlstrom U, Edner M. Association between use of renin-angiotensin system antagonists and mortality in patients with heart failure and preserved ejection fraction. JAMA. 2012;208(20):2108–17.

    Google Scholar 

  65. Luijendijk HJ, Tiemeier H, van den Berg JF, et al. Heart failure and incident late-life depression. J Am Geriatr Soc. 2010;58:1441–6.

    PubMed  Google Scholar 

  66. Rutledge T, Reis VA, Linke SE, et al. Depression in heart failure: a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. J Am Coll Cardiol. 2006;48:1527–37.

    PubMed  Google Scholar 

  67. Chapa DW, Akintade B, Son H, et al. Relationships between heart failure and depression and anxiety. Crit Care Nurse. 2014;34(2):14–25.

    PubMed  Google Scholar 

  68. Silver MA. Depression and heart failure: an overview of what we know and don’t know. Cleve Clin J Med. 2010;77(3):S7–11.

    PubMed  Google Scholar 

  69. Atas UY, Helvaci A, Karamustafaalioglu O, et al. The effect of anxiety and/or depression to morbidity and mortality in hospitalized patients with heart failure. J Am Coll Cardiol. 2013;62(18):C115–6.

    Google Scholar 

  70. MacMahon KMA, Lip GYH. Psychological factors in heart failure a review of the literature. Arch Intern Med. 2002;162:509–16.

    PubMed  Google Scholar 

  71. Polikandrioti M, Christou A, Morou Z, et al. Evaluation of depression in patients with heart failure. Health Sci J. 2010;4(1):37–47.

    Google Scholar 

  72. Wallenborn J, Angermann CE. Comorbid depression in heart failure. Herz. 2013;38:587–96.

    CAS  PubMed  Google Scholar 

  73. Dekker RL, Lennie TA, Doering LV, et al. Coexisting anxiety and depressive symptoms in patients with heart failure. Eur J Cardiovasc Nurs. 2014;13(2):168–76.

    PubMed Central  PubMed  Google Scholar 

  74. Vaccarino V, Bremner JD. Chapter 91 psychiatric and behavioral aspects of cardiovascular disease. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 9th ed. Philadelphia: Elsevier Saunders; 2012.

    Google Scholar 

  75. Smith L. Evaluation and treatment of depression in patients with heart failure. J Am Acad Nurse Pract. 2010;22:440–8.

    PubMed  Google Scholar 

  76. Thomas SA, Chapa DW, Friedman E, et al. Depression in patients with heart failure: prevalence pathophysiological mechanisms, and treatment. Crit Care Nurse. 2008;28(2):40–55.

    PubMed  Google Scholar 

  77. McGowan D. Depression and the pathogenesis of heart failure. Br J Card Nurs. 2013;8(4):198–203.

    Google Scholar 

  78. Mentz RJ, Fiuzat M. Sleep-disordered breathing in patients with heart failure. Heart Fail Clin. 2014;10:243–50.

    PubMed Central  PubMed  Google Scholar 

  79. Yumino D, Kasai T, Kimmerly D, et al. Differing effects of obstructive and central sleep apneas on stroke volume in patients with heart failure. Am J Respir Crit Care Med. 2013;187(4):433–8.

    PubMed  Google Scholar 

  80. Latina JM, Estes NA III, Garlitski AC. The relationship between obstructive sleep apnea and atrial fibrillation: a complex interplay. Pulm Med. 2013;2013:621736.

    Google Scholar 

  81. Reishtein JL. Obstructive sleep apnea a risk factor for cardiovascular disease. J Cardiovasc Nurs. 2011;26(2):106–16.

    PubMed  Google Scholar 

  82. Wilcox I, Semsarian C. Obstructive sleep apnea a respiratory syndrome with protean cardiovascular manifestations. J Am Coll Cardiol. 2009;54(19):1810–2.

    PubMed  Google Scholar 

  83. Emdin M, Passino C, Giannoni A. Breathless heart. J Am Coll Cardiol. 2013;61(11):1167–8.

    PubMed  Google Scholar 

  84. Mehra R. Obstructive sleep apnea research: challenges and new horizons. Sleep Med. 2014;15:483–4.

    PubMed  Google Scholar 

  85. Kaneko Y, Floras JS, Phil D, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med. 2003;348:1233–41.

    PubMed  Google Scholar 

  86. Shamsuzzaman ASM, Gersh BJ, Somers VK. Obstructive sleep apnea implications for cardiac and vascular disease. JAMA. 2003;290(14):1906–14.

    CAS  PubMed  Google Scholar 

  87. Ramar K, Caples SM. Cardiovascular consequences of obese and nonobese obstructive sleep apnea. Med Clin N Am. 2010;94:465–78.

    PubMed Central  PubMed  Google Scholar 

  88. Naughton MT, Lorenzi-Filho G. Sleep in heart failure. Progress Cardiovasc Dis. 2009;51(4):339–49.

    Google Scholar 

  89. Dorasamy P. Obstructive sleep apnea and cardiovascular risk. Ther Clin Risk Manag. 2007;3(6):1105–11.

    PubMed Central  PubMed  Google Scholar 

  90. Zamarron C, Cuadrado LV, Alvarez-Sala R. Pathophysiologic mechanisms of cardiovascular disease in obstructive sleep apnea syndrome. Pulm Med. 2013;291:1–16.

    Google Scholar 

  91. Heart disease and stroke. 2012. Retrieved August 9, 2014, from http://www.cdc.gov/tobacco/basic_information/health_effects/heart_disease/.

  92. International Agency for Research On Cancer. Tobacco control: reversal of risk after quitting smoking. IARC handbooks of cancer prevention, vol. 11. 2007. World Health Organization; Geneva, Switzerland. p. 11.

    Google Scholar 

  93. Trap-Jensen J M.D. Effects of smoking on the heart and peripheral circulation. Am Heart J. 1988;115(1 Pt 2):263–7.

    CAS  PubMed  Google Scholar 

  94. Irwin B, Hanenson MD. Studies on water excretion following intravenous hydration and the administration of pitressin or nicotine in congestive heart failure. Am Heart Assoc. 1956;13:242–51.

    Google Scholar 

  95. Tolstrup JS. Smoking and risk of coronary heart disease in younger, middle-aged, and older adults. Am J Public Health. 2014;104(1):96–102.

    PubMed  Google Scholar 

  96. Price JF, Mowbray PI, Lee AJ, Rumley A, Lowe GDO, Fowkes FGR. Relationship between smoking and cardiovascular risk factors in the development of peripheral arterial disease and coronary artery disease. Eur Heart J. 1999;20(5):344–53. doi:10.1053/euhj.1998.1194.

    CAS  PubMed  Google Scholar 

  97. Chen DB, Wang L, Wang PH. Insulin-like growth factor I retards apoptotic signaling induced by ethanol in cardiomyocytes. Life Sci. 2000;67:1683–93.

    CAS  PubMed  Google Scholar 

  98. Jackson G, Gibbs CR, Davies MK, Lip GY. ABC of heart failure. Pathophysiology. BMJ. 2000;320:167–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Bristow MR. Beta-adrenergic receptor blockade in chronic heart failure. Circulation. 2000;101:558–69.

    CAS  PubMed  Google Scholar 

  100. Adams MA, Hirst M. Metoprolol suppresses the development of ethanol-induced cardiac hypertrophy in the rat. Can J Physiol Pharmacol. 1990;68:562–7.

    CAS  PubMed  Google Scholar 

  101. Danziger RS, Sakai M, Capogrossi MC, et al. Ethanol acutely and reversibly suppresses excitation-contraction coupling in cardiac myocytes. Circ Res. 1991;68:1660–8.

    CAS  PubMed  Google Scholar 

  102. Elliot P. Diagnosis and management of dilated cardiomyopathy. Heart. 2000;84(1):106. doi:10.1136/heart.84.1.106.

    Google Scholar 

  103. Kannel WB, Ellison RC. Alcohol and coronary heart disease: the evidence for a protective effect. Clin Chim Acta. 1996;246:59–76.

    CAS  PubMed  Google Scholar 

  104. Corrao G, Rubbiati L, Bagnardi V, et al. Alcohol and coronary heart disease: a meta-analysis. Addiction. 2000;95:1505–23.

    CAS  PubMed  Google Scholar 

  105. Collins MA, Neafsey EJ, Mukamal KJ, et al. Alcohol in moderation, cardioprotection, and neuroprotection: epidemiological considerations and mechanistic studies. Alcohol Clin Exp Res. 2009;33:206–19.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Agarwal DP. Cardiovascular effects of light-moderate consumption of alcohol: a review of putative mechanism. Alcohol Alcohol. 2002;37:409–15.

    CAS  PubMed  Google Scholar 

  107. Jacobs LJ, et al. Reversible dilated cardiomyopathy induced by methamphetamine. Clin Cardiol. 1989;12:725–7.

    CAS  PubMed  Google Scholar 

  108. Factor SM, Sonnenblick EH. The pathogenesis of clinical and experimental congestive cardiomyopathies: recent concepts. Prog Cardiovasc Dis. 1985;27:395.

    CAS  PubMed  Google Scholar 

  109. Pearce RM. Experimental myocarditis: a study of the histological changes following intravenous injections of adrenalin. J Exp Med. 1906;8:400.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Karch SB, Billingham ME. Myocardial contraction bands revisited. Human Pathol. 1986;17:9.

    CAS  Google Scholar 

  111. Zaca V, Lunghetti S, Ballo P, et al. Recovery from cardiomyopathy after abstinence from cocaine. Lancet. 2007;369:1574.

    PubMed  Google Scholar 

  112. Chokshi SK, Moore R, Pandian NG, et al. Reversible cardiomyopathy associated with cocaine intoxication. Ann Intern Med. 1989;111:1039–40.

    CAS  PubMed  Google Scholar 

  113. Unverferth DV, Magorie RD, Moeschberger ML, Baker PB, Fetters JK, Leier CV. Factors influencing the one-year mortality of dilated cardiomyopathy. Am J Cardiol. 1984;54(1):147–52.

    CAS  PubMed  Google Scholar 

  114. Robledo-Carmona J, Ortega-Jimenez MV, Garcia-Pinilla JM, et al. Severe cardiopathy associated to cocaine abuse. Int J Cardiol. 2006;112:130–1.

    PubMed  Google Scholar 

  115. Kloner RA, Hale S, Alker K, et al. The effects of acute and chronic cocaine use on the heart. Circulation. 1992;85:407–19.

    CAS  PubMed  Google Scholar 

  116. Turhan H, Aksoy Y, Ozgun G, et al. Cocaine-induced acute myocardial infarction in young individuals with otherwise normal coronary risk profile: is coronary microvascular dysfunction one of the underlying mechanisms? Int J Cardiol. 2007;114:106–7.

    PubMed  Google Scholar 

  117. Frishman WH, Del Vecchio A, Sanal S, Ismail A. Cardiovascular manifestations of substance abuse: part 2: alcohol, amphetamines, heroin, cannabis, and caffeine. Heart Dis. 2003;5:253–71.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Lymperopoulos BPharm, MSc, PhD, FAHA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Capote, L., Nyakundi, R., Martinez, B., Lymperopoulos, A. (2015). Pathophysiology of Heart Failure. In: Jagadeesh, G., Balakumar, P., Maung-U, K. (eds) Pathophysiology and Pharmacotherapy of Cardiovascular Disease. Adis, Cham. https://doi.org/10.1007/978-3-319-15961-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15961-4_3

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-15960-7

  • Online ISBN: 978-3-319-15961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics