Lozano R, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.
PubMed
CrossRef
Google Scholar
Hajjar I, Kotchen TA. Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000. JAMA. 2003;290(2):199–206.
PubMed
CrossRef
Google Scholar
Ostchega Y, et al. Trends of elevated blood pressure among children and adolescents: data from the National Health and Nutrition Examination Survey 1988–2006. Am J Hypertens. 2009;22(1):59–67.
PubMed
CrossRef
Google Scholar
Barker DJ, et al. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989;298(6673):564–7.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Moritz KM, et al. Developmental programming of a reduced nephron endowment: more than just a baby’s birth weight. Am J Physiol Renal Physiol. 2009;296(1):F1–9.
CAS
PubMed
CrossRef
Google Scholar
Lurbe E, et al. Management of high blood pressure in children and adolescents: recommendations of the European Society of Hypertension. J Hypertens. 2009;27(9):1719–42.
CAS
PubMed
CrossRef
Google Scholar
Chiolero A, et al. Prevalence of hypertension in schoolchildren based on repeated measurements and association with overweight. J Hypertens. 2007;25(11):2209–17.
CAS
PubMed
CrossRef
Google Scholar
Chiolero A, et al. Discordant secular trends in elevated blood pressure and obesity in children and adolescents in a rapidly developing country. Circulation. 2009;119(4):558–65.
PubMed
CrossRef
Google Scholar
Portman RJ, et al. Pediatric hypertension: diagnosis, evaluation, management, and treatment for the primary care physician. Curr Probl Pediatr Adolesc Health Care. 2005;35(7):262–94.
PubMed
CrossRef
Google Scholar
Brown NJ. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol. 2013;9(8):459–69.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Bondanelli M, Ambrosio MR, degli Uberti EC. Pathogenesis and prevalence of hypertension in acromegaly. Pituitary. 2001;4(4):239–49.
CAS
PubMed
CrossRef
Google Scholar
Kamenicky P, et al. Body fluid expansion in acromegaly is related to enhanced epithelial sodium channel (ENaC) activity. J Clin Endocrinol Metab. 2011;96(7):2127–35.
CAS
PubMed
CrossRef
Google Scholar
Rosskopf D, et al. Genetics of arterial hypertension and hypotension. Naunyn Schmiedebergs Arch Pharmacol. 2007;374(5–6):429–69.
CAS
PubMed
CrossRef
Google Scholar
Stabouli S, Kotsis V, Zakopoulos N. Ambulatory blood pressure monitoring and target organ damage in pediatrics. J Hypertens. 2007;25(10):1979–86.
CAS
PubMed
CrossRef
Google Scholar
Guyton AC. Long-term arterial pressure control: an analysis from animal experiments and computer and graphic models. Am J Physiol. 1990;259(5 Pt 2):R865–77.
CAS
PubMed
Google Scholar
Ivy JR, Bailey MA. Pressure natriuresis and the renal control of arterial blood pressure. J Physiol. 2014;592(Pt 18):3955–67.
CAS
PubMed
CrossRef
Google Scholar
Rettig R, Grisk O. The kidney as a determinant of genetic hypertension: evidence from renal transplantation studies. Hypertension. 2005;46(3):463–8.
CAS
PubMed
CrossRef
Google Scholar
Crowley SD, et al. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J Clin Invest. 2005;115(4):1092–9.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Curtis JJ, et al. Remission of essential hypertension after renal transplantation. N Engl J Med. 1983;309(17):1009–15.
CAS
PubMed
CrossRef
Google Scholar
Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104(4):545–56.
CAS
PubMed
CrossRef
Google Scholar
Fava C, et al. 24-h ambulatory blood pressure is linked to chromosome 18q21-22 and genetic variation of NEDD4L associates with cross-sectional and longitudinal blood pressure in Swedes. Kidney Int. 2006;70(3):562–9.
CAS
PubMed
Google Scholar
Fava C, et al. Subjects heterozygous for genetic loss of function of the thiazide-sensitive cotransporter have reduced blood pressure. Hum Mol Genet. 2008;17(3):413–8.
CAS
PubMed
CrossRef
Google Scholar
Kobori H, et al. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87.
CAS
PubMed
CrossRef
Google Scholar
Lombardi D, et al. Salt-sensitive hypertension develops after short-term exposure to Angiotensin II. Hypertension. 1999;33(4):1013–9.
CAS
PubMed
CrossRef
Google Scholar
Franco M, et al. Impaired pressure natriuresis resulting in salt-sensitive hypertension is caused by tubulointerstitial immune cell infiltration in the kidney. Am J Physiol Renal Physiol. 2013;304(7):F982–90.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77(1):75–197.
CAS
PubMed
Google Scholar
DiBona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R245–53.
CAS
PubMed
CrossRef
Google Scholar
Julius S. Autonomic nervous system dysregulation in human hypertension. Am J Cardiol. 1991;67(10):3B–7.
CAS
PubMed
CrossRef
Google Scholar
Krum H, et al. Novel procedure- and device-based strategies in the management of systemic hypertension. Eur Heart J. 2011;32(5):537–44.
PubMed
CrossRef
Google Scholar
Patrono C. The PGH-synthase system and isozyme-selective inhibition. J Cardiovasc Pharmacol. 2006;47 Suppl 1:S1–6.
CAS
PubMed
CrossRef
Google Scholar
Harris Jr RC. Cyclooxygenase-2 inhibition and renal physiology. Am J Cardiol. 2002;89(6A):10D–7.
CAS
PubMed
CrossRef
Google Scholar
Harris RC, et al. Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. J Clin Invest. 1994;94(6):2504–10.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Lin L, et al. Role of prostanoids in renin-dependent and renin-independent hypertension. Hypertension. 1991;17(4):517–25.
CAS
PubMed
CrossRef
Google Scholar
Fujino T, et al. Decreased susceptibility to renovascular hypertension in mice lacking the prostaglandin I2 receptor IP. J Clin Invest. 2004;114(6):805–12.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Cinotti GA, Pugliese F. Prostaglandins and hypertension. Am J Hypertens. 1989;2(2 Pt 2):10S–5.
CAS
PubMed
CrossRef
Google Scholar
Hornych A, et al. Thromboxane B2 in borderline and essential hypertensive patients. Prostaglandins Leukot Med. 1983;10(2):145–55.
CAS
PubMed
CrossRef
Google Scholar
Sowers JR, et al. The Effects of cyclooxygenase-2 inhibitors and nonsteroidal anti-inflammatory therapy on 24-hour blood pressure in patients with hypertension, osteoarthritis, and type 2 diabetes mellitus. Arch Intern Med. 2005;165(2):161–8.
CAS
PubMed
CrossRef
Google Scholar
Folkow B. Acute effects of pressure on resistance vessel geometry. Acta Physiol Scand. 1978;104(4):496–8.
CAS
PubMed
CrossRef
Google Scholar
Takeshita A, Mark AL. Decreased vasodilator capacity of forearm resistance vessels in borderline hypertension. Hypertension. 1980;2(5):610–6.
CAS
PubMed
CrossRef
Google Scholar
Mulvany MJ. Small artery remodelling in hypertension. Basic Clin Pharmacol Toxicol. 2012;110(1):49–55.
CAS
PubMed
CrossRef
Google Scholar
Bakker EN, et al. Organoid culture of cannulated rat resistance arteries: effect of serum factors on vasoactivity and remodeling. Am J Physiol Heart Circ Physiol. 2000;278(4):H1233–40.
CAS
PubMed
Google Scholar
Bakker EN, et al. Small artery remodeling depends on tissue-type transglutaminase. Circ Res. 2005;96(1):119–26.
CAS
PubMed
CrossRef
Google Scholar
Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med. 1990;323(1):27–36.
CAS
PubMed
CrossRef
Google Scholar
Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373–6.
CAS
PubMed
CrossRef
Google Scholar
Konishi M, Su C. Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension. 1983;5(6):881–6.
CAS
PubMed
CrossRef
Google Scholar
Luscher TF, Raij L, Vanhoutte PM. Endothelium-dependent vascular responses in normotensive and hypertensive Dahl rats. Hypertension. 1987;9(2):157–63.
CAS
PubMed
CrossRef
Google Scholar
Panza JA, et al. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990;323(1):22–7.
CAS
PubMed
CrossRef
Google Scholar
Miller MJ, Pinto A, Mullane KM. Impaired endothelium-dependent relaxations in rabbits subjected to aortic coarctation hypertension. Hypertension. 1987;10(2):164–70.
CAS
PubMed
CrossRef
Google Scholar
Taddei S, et al. Aging and endothelial function in normotensive subjects and patients with essential hypertension. Circulation. 1995;91(7):1981–7.
CAS
PubMed
CrossRef
Google Scholar
Huang PL, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995;377(6546):239–42.
CAS
PubMed
CrossRef
Google Scholar
Van Vliet BN, Chafe LL, Montani JP. Characteristics of 24 h telemetered blood pressure in eNOS-knockout and C57Bl/6J control mice. J Physiol. 2003;549(Pt 1):313–25.
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Schiffrin EL. A critical review of the role of endothelial factors in the pathogenesis of hypertension. J Cardiovasc Pharmacol. 2001;38 Suppl 2:S3–6.
CAS
PubMed
CrossRef
Google Scholar
Kurtz A, Wagner C. Role of nitric oxide in the control of renin secretion. Am J Physiol. 1998;275(6 Pt 2):F849–62.
CAS
PubMed
Google Scholar
Yanagisawa M, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332(6163):411–5.
CAS
PubMed
CrossRef
Google Scholar
Luscher TF, Seo BG, Buhler FR. Potential role of endothelin in hypertension. Controversy on endothelin in hypertension. Hypertension. 1993;21(6 Pt 1):752–7.
CAS
PubMed
CrossRef
Google Scholar
Rabelink TJ, et al. Effects of endothelin-1 on renal function in humans: implications for physiology and pathophysiology. Kidney Int. 1994;46(2):376–81.
CAS
PubMed
CrossRef
Google Scholar
Kohan DE. Endothelins in the normal and diseased kidney. Am J Kidney Dis. 1997;29(1):2–26.
CAS
PubMed
CrossRef
Google Scholar
Ahn D, et al. Collecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention. J Clin Invest. 2004;114(4):504–11.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Ishikawa T, et al. Positive inotropic action of novel vasoconstrictor peptide endothelin on guinea pig atria. Am J Physiol. 1988;255(4 Pt 2):H970–3.
CAS
PubMed
Google Scholar
Schiffrin EL. Vascular endothelin in hypertension. Vascul Pharmacol. 2005;43(1):19–29.
CAS
PubMed
CrossRef
Google Scholar
Schiffrin EL. The angiotensin-endothelin relationship: does it play a role in cardiovascular and renal pathophysiology? J Hypertens. 2003;21(12):2245–7.
CAS
PubMed
CrossRef
Google Scholar
Gariepy CE, et al. Salt-sensitive hypertension in endothelin-B receptor-deficient rats. J Clin Invest. 2000;105(7):925–33.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Ergul S, et al. Racial differences in plasma endothelin-1 concentrations in individuals with essential hypertension. Hypertension. 1996;28(4):652–5.
CAS
PubMed
CrossRef
Google Scholar
Granger JP, et al. Pathophysiology of hypertension during preeclampsia linking placental ischemia with endothelial dysfunction. Hypertension. 2001;38(3 Pt 2):718–22.
CAS
PubMed
CrossRef
Google Scholar
Zhou J, et al. Gestational hypoxia induces preeclampsia-like symptoms via heightened endothelin-1 signaling in pregnant rats. Hypertension. 2013;62(3):599–607.
CAS
PubMed
CrossRef
Google Scholar
Krum H, et al. The effect of an endothelin-receptor antagonist, bosentan, on blood pressure in patients with essential hypertension. Bosentan Hypertension Investigators. N Engl J Med. 1998;338(12):784–90.
CAS
PubMed
CrossRef
Google Scholar
Nakov R, et al. Darusentan: an effective endothelinA receptor antagonist for treatment of hypertension. Am J Hypertens. 2002;15(7 Pt 1):583–9.
CAS
PubMed
CrossRef
Google Scholar
Flegal KM, et al. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. 2012;307(5):491–7.
PubMed
CrossRef
Google Scholar
Bretzel RG. Can we further slow down the progression to end-stage renal disease in diabetic hypertensive patients? J Hypertens Suppl. 1997;15(2):S83–8.
CAS
PubMed
CrossRef
Google Scholar
Hall JE. The kidney, hypertension, and obesity. Hypertension. 2003;41(3 Pt 2):625–33.
PubMed
CrossRef
CAS
Google Scholar
Vogt B, Bochud M, Burnier M. The association of aldosterone with obesity-related hypertension and the metabolic syndrome. Semin Nephrol. 2007;27(5):529–37.
CAS
PubMed
CrossRef
Google Scholar
Goodfriend TL, et al. Epoxy-keto derivative of linoleic acid stimulates aldosterone secretion. Hypertension. 2004;43(2):358–63.
CAS
PubMed
CrossRef
Google Scholar
da Silva AA, et al. The role of the sympathetic nervous system in obesity-related hypertension. Curr Hypertens Rep. 2009;11(3):206–11.
PubMed Central
PubMed
CrossRef
Google Scholar
Schwartz MW, et al. Central nervous system control of food intake. Nature. 2000;404(6778):661–71.
CAS
PubMed
Google Scholar
da Silva AA, do Carmo JM, Hall JE. Role of leptin and central nervous system melanocortins in obesity hypertension. Curr Opin Nephrol Hypertens. 2013;22(2):135–40.
PubMed Central
PubMed
CrossRef
CAS
Google Scholar
Prior LJ, et al. Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension. 2010;55(4):862–8.
CAS
PubMed
CrossRef
Google Scholar
Mark AL. Selective leptin resistance revisited. Am J Physiol Regul Integr Comp Physiol. 2013;305(6):R566–81.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Wang ZV, Scherer PE. Adiponectin, cardiovascular function, and hypertension. Hypertension. 2008;51(1):8–14.
CAS
PubMed
CrossRef
Google Scholar
Ouchi N, et al. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension. 2003;42(3):231–4.
CAS
PubMed
CrossRef
Google Scholar
Tanida M, et al. Effects of adiponectin on the renal sympathetic nerve activity and blood pressure in rats. Exp Biol Med (Maywood). 2007;232(3):390–7.
CAS
Google Scholar
Sarafidis PA, Bakris GL. Review: insulin and endothelin: an interplay contributing to hypertension development? J Clin Endocrinol Metab. 2007;92(2):379–85.
CAS
PubMed
CrossRef
Google Scholar
Manrique C, Lastra G, Sowers JR. New insights into insulin action and resistance in the vasculature. Ann N Y Acad Sci. 2014;1311:138–50.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
de Bold AJ, et al. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981;28(1):89–94.
PubMed
CrossRef
Google Scholar
Iida T, et al. Brain natriuretic peptide is cosecreted with atrial natriuretic peptide from porcine cardiocytes. FEBS Lett. 1990;260(1):98–100.
CAS
PubMed
CrossRef
Google Scholar
Nakao K, et al. Molecular biology and biochemistry of the natriuretic peptide system. I: natriuretic peptides. J Hypertens. 1992;10(9):907–12.
CAS
PubMed
CrossRef
Google Scholar
Kario K, et al. Efficacy and safety of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Asian patients with hypertension: a randomized, double-blind, placebo-controlled study. Hypertension. 2014;63(4):698–705.
CAS
PubMed
CrossRef
Google Scholar
Fluckiger JP, et al. Effect of atriopeptin III on hematocrit and volemia of nephrectomized rats. Am J Physiol. 1986;251(4 Pt 2):H880–3.
CAS
PubMed
Google Scholar
Volpe M, et al. Effect of atrial natriuretic factor on blood pressure, renin, and aldosterone in Goldblatt hypertension. Hypertension. 1985;7(3 Pt 2):I43–8.
CAS
PubMed
CrossRef
Google Scholar
de Wardener HE. The hypothalamus and hypertension. Physiol Rev. 2001;81(4):1599–658.
PubMed
Google Scholar
John SW, et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science. 1995;267(5198):679–81.
CAS
PubMed
CrossRef
Google Scholar
Lopez MJ, et al. Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature. 1995;378(6552):65–8.
CAS
PubMed
CrossRef
Google Scholar
Steinhelper ME, Cochrane KL, Field LJ. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension. 1990;16(3):301–7.
CAS
PubMed
CrossRef
Google Scholar
Jin HK, et al. Impaired release of atrial natriuretic factor in NaCl-loaded spontaneously hypertensive rats. Hypertension. 1988;11(6 Pt 2):739–44.
CAS
PubMed
CrossRef
Google Scholar
Schiffrin EL, St-Louis J, Essiambre R. Platelet binding sites and plasma concentration of atrial natriuretic peptide in patients with essential hypertension. J Hypertens. 1988;6(7):565–72.
CAS
PubMed
CrossRef
Google Scholar
Talartschik J, et al. Low atrial natriuretic peptide plasma concentrations in 100 patients with essential hypertension. Am J Hypertens. 1990;3(1):45–7.
CAS
PubMed
Google Scholar
Ferrari P, et al. Dysregulation of atrial natriuretic factor in hypertension-prone man. J Clin Endocrinol Metab. 1990;71(4):944–51.
CAS
PubMed
CrossRef
Google Scholar
Campese VM, et al. Salt intake and plasma atrial natriuretic peptide and nitric oxide in hypertension. Hypertension. 1996;28(3):335–40.
CAS
PubMed
CrossRef
Google Scholar
Cannone V, et al. Atrial natriuretic peptide genetic variant rs5065 and risk for cardiovascular disease in the general community: a 9-year follow-up study. Hypertension. 2013;62(5):860–5.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Rubattu S, Sciarretta S, Volpe M. Atrial natriuretic peptide gene variants and circulating levels: implications in cardiovascular diseases. Clin Sci (Lond). 2014;127(1):1–13.
CAS
CrossRef
Google Scholar
Margolius HS, et al. Urinary kallikrein excretion in hypertension. Circ Res. 1972;31 Suppl 2:125–31.
PubMed
Google Scholar
Levy SB, et al. Urinary kallikrein and plasma renin activity as determinants of renal blood flow. The influence of race and dietary sodium intake. J Clin Invest. 1977;60(1):129–38.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Alfie ME, et al. Effect of high salt intake in mutant mice lacking bradykinin-B2 receptors. Hypertension. 1997;29(1 Pt 2):483–7.
CAS
PubMed
CrossRef
Google Scholar
Majima M, et al. High sensitivity to salt in kininogen-deficient brown Norway Katholiek rats. Hypertension. 1993;22(5):705–14.
CAS
PubMed
CrossRef
Google Scholar
Madeddu P, et al. Chronic kinin receptor blockade induces hypertension in deoxycorticosterone-treated rats. Br J Pharmacol. 1993;108(3):651–7.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Wang J, et al. Human tissue kallikrein induces hypotension in transgenic mice. Hypertension. 1994;23(2):236–43.
CAS
PubMed
CrossRef
Google Scholar
Berry TD, et al. A gene for high urinary kallikrein may protect against hypertension in Utah kindreds. Hypertension. 1989;13(1):3–8.
CAS
PubMed
CrossRef
Google Scholar
Zinner SH, et al. Familial aggregation of urinary kallikrein concentration in childhood: relation to blood pressure, race and urinary electrolytes. Am J Epidemiol. 1976;104(2):124–32.
CAS
PubMed
Google Scholar
Katori M, Majima M. Renal (tissue) kallikrein-kinin system in the kidney and novel potential drugs for salt-sensitive hypertension. Prog Drug Res. 2014;69:59–109.
PubMed
Google Scholar
Share L. Role of vasopressin in cardiovascular regulation. Physiol Rev. 1988;68(4):1248–84.
CAS
PubMed
Google Scholar
Bankir L, Bouby N, Ritz E. Vasopressin: a novel target for the prevention and retardation of kidney disease? Nat Rev Nephrol. 2013;9(4):223–39.
CAS
PubMed
CrossRef
Google Scholar
Okada H, et al. Chronic and selective vasopressin blockade in spontaneously hypertensive rats. Am J Physiol. 1994;267(6 Pt 2):R1467–71.
CAS
PubMed
Google Scholar
Burrell LM, et al. Blood pressure-lowering effect of an orally active vasopressin V1 receptor antagonist in mineralocorticoid hypertension in the rat. Hypertension. 1994;23(6 Pt 1):737–43.
CAS
PubMed
CrossRef
Google Scholar
Burrell LM, et al. Age-dependent regulation of renal vasopressin V(1A) and V(2) receptors in rats with genetic hypertension: implications for the treatment of hypertension. J Am Soc Hypertens. 2013;7(1):3–13.
CAS
PubMed
CrossRef
Google Scholar
Naitoh M, et al. Modulation of genetic hypertension by short-term AVP V1A or V2 receptor antagonism in young SHR. Am J Physiol. 1997;272(2 Pt 2):F229–34.
CAS
PubMed
Google Scholar
Weber R, et al. Effects of SR 49059, a new orally active and specific vasopressin V1 receptor antagonist, on vasopressin-induced vasoconstriction in humans. Hypertension. 1997;30(5):1121–7.
CAS
PubMed
CrossRef
Google Scholar
Thibonnier M, et al. Effects of the nonpeptide V(1) vasopressin receptor antagonist SR49059 in hypertensive patients. Hypertension. 1999;34(6):1293–300.
CAS
PubMed
CrossRef
Google Scholar
Gavras H, et al. Effects of a specific inhibitor of the vascular action of vasopressin in humans. Hypertension. 1984;6(2 Pt 2):I156–60.
CAS
PubMed
CrossRef
Google Scholar
Gavras H. Role of vasopressin in clinical hypertension and congestive cardiac failure: interaction with the sympathetic nervous system. Clin Chem. 1991;37(10 Pt 2):1828–30.
CAS
PubMed
Google Scholar
Harris RC. Abnormalities in renal dopamine signaling and hypertension: the role of GRK4. Curr Opin Nephrol Hypertens. 2012;21(1):61–5.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Felder RA, Jose PA. Mechanisms of disease: the role of GRK4 in the etiology of essential hypertension and salt sensitivity. Nat Clin Pract Nephrol. 2006;2(11):637–50.
CAS
PubMed
CrossRef
Google Scholar
Svendsen UG. The importance of thymus in the pathogenesis of the chronic phase of hypertension in mice following partial infarction of the kidney. Acta Pathol Microbiol Scand A. 1977;85(4):539–47.
CAS
PubMed
Google Scholar
Bataillard A, et al. Antihypertensive effect of neonatal thymectomy in the genetically hypertensive LH rat. Thymus. 1986;8(6):321–30.
CAS
PubMed
Google Scholar
Idris-Khodja N, et al. Dual opposing roles of adaptive immunity in hypertension. Eur Heart J. 2014;35(19):1238–44.
CAS
PubMed
CrossRef
Google Scholar
Harrison DG, et al. Inflammation, immunity, and hypertension. Hypertension. 2011;57(2):132–40.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Cheng S, et al. Blood pressure tracking over the adult life course: patterns and correlates in the Framingham heart study. Hypertension. 2012;60(6):1393–9.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Burt VL, et al. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988–1991. Hypertension. 1995;25(3):305–13.
CAS
PubMed
CrossRef
Google Scholar
Bubb KJ, Khambata RS, Ahluwalia A. Sexual dimorphism in rodent models of hypertension and atherosclerosis. Br J Pharmacol. 2012;167(2):298–312.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Reckelhoff JF. Gender differences in the regulation of blood pressure. Hypertension. 2001;37(5):1199–208.
CAS
PubMed
CrossRef
Google Scholar
Charchar FJ, et al. Y is there a risk to being male? Trends Endocrinol Metab. 2003;14(4):163–8.
CAS
PubMed
CrossRef
Google Scholar
Reckelhoff JF, Zhang H, Granger JP. Testosterone exacerbates hypertension and reduces pressure-natriuresis in male spontaneously hypertensive rats. Hypertension. 1998;31(1 Pt 2):435–9.
CAS
PubMed
CrossRef
Google Scholar
Baltatu O, et al. Abolition of end-organ damage by antiandrogen treatment in female hypertensive transgenic rats. Hypertension. 2003;41(3 Pt 2):830–3.
CAS
PubMed
CrossRef
Google Scholar
Quan A, et al. Androgens augment proximal tubule transport. Am J Physiol Renal Physiol. 2004;287(3):F452–9.
CAS
PubMed
CrossRef
Google Scholar
Quinkler M, et al. Androgen receptor-mediated regulation of the alpha-subunit of the epithelial sodium channel in human kidney. Hypertension. 2005;46(4):787–98.
CAS
PubMed
CrossRef
Google Scholar
Dahl LK, et al. Role of the gonads in hypertension-prone rats. J Exp Med. 1975;142(3):748–59.
CAS
PubMed
CrossRef
Google Scholar
Masubuchi Y, et al. Gonadectomy-induced reduction of blood pressure in adult spontaneously hypertensive rats. Acta Endocrinol (Copenh). 1982;101(1):154–60.
CAS
Google Scholar
Chappell MC, Yamaleyeva LM, Westwood BM. Estrogen and salt sensitivity in the female mRen(2). Lewis rat. Am J Physiol Regul Integr Comp Physiol. 2006;291(5):R1557–63.
CAS
PubMed
CrossRef
Google Scholar
Kang AK, Miller JA. Impact of gender on renal disease: the role of the renin angiotensin system. Clin Invest Med. 2003;26(1):38–44.
CAS
PubMed
Google Scholar
James GD, et al. Renin relationship to sex, race and age in a normotensive population. J Hypertens Suppl. 1986;4(5):S387–9.
CAS
PubMed
Google Scholar
Hollenberg NK, et al. Renal blood flow and its response to angiotensin II. An interaction between oral contraceptive agents, sodium intake, and the renin-angiotensin system in healthy young women. Circ Res. 1976;38(1):35–40.
CAS
PubMed
CrossRef
Google Scholar
Ellison KE, et al. Androgen regulation of rat renal angiotensinogen messenger RNA expression. J Clin Invest. 1989;83(6):1941–5.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Katz FH, Roper EF. Testosterone effect on renin system in rats. Proc Soc Exp Biol Med. 1977;155(3):330–3.
CAS
PubMed
CrossRef
Google Scholar
Chen YF, Naftilan AJ, Oparil S. Androgen-dependent angiotensinogen and renin messenger RNA expression in hypertensive rats. Hypertension. 1992;19(5):456–63.
CAS
PubMed
CrossRef
Google Scholar
Leung PS, et al. Androgen dependent expression of AT1 receptor and its regulation of anion secretion in rat epididymis. Cell Biol Int. 2002;26(1):117–22.
CAS
PubMed
CrossRef
Google Scholar
Miller JA, Anacta LA, Cattran DC. Impact of gender on the renal response to angiotensin II. Kidney Int. 1999;55(1):278–85.
CAS
PubMed
CrossRef
Google Scholar
Pechere-Bertschi A, Burnier M. Female sex hormones, salt, and blood pressure regulation. Am J Hypertens. 2004;17(10):994–1001.
CAS
PubMed
CrossRef
Google Scholar
Chobanian AV. Clinical practice. Isolated systolic hypertension in the elderly. N Engl J Med. 2007;357(8):789–96.
CAS
PubMed
CrossRef
Google Scholar
Lehoux S, et al. Pressure-induced matrix metalloproteinase-9 contributes to early hypertensive remodeling. Circulation. 2004;109(8):1041–7.
CAS
PubMed
CrossRef
Google Scholar
Dhingra R, et al. Relations of matrix remodeling biomarkers to blood pressure progression and incidence of hypertension in the community. Circulation. 2009;119(8):1101–7.
PubMed Central
PubMed
CrossRef
Google Scholar
Nagareddy PR, et al. Inhibition of matrix metalloproteinase-2 improves endothelial function and prevents hypertension in insulin-resistant rats. Br J Pharmacol. 2012;165(3):705–15.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Jensky NE, et al. Blood pressure and vascular calcification. Hypertension. 2010;55(4):990–7.
PubMed Central
CAS
PubMed
CrossRef
Google Scholar
Mente A, et al. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med. 2014;371(7):601–11.
PubMed
CrossRef
CAS
Google Scholar
Elliott P, et al. The INTERSALT study: main results, conclusions and some implications. Clin Exp Hypertens A. 1989;11(5–6):1025–34.
CAS
PubMed
CrossRef
Google Scholar
Chiolero A, Wurzner G, Burnier M. Renal determinants of the salt sensitivity of blood pressure. Nephrol Dial Transplant. 2001;16(3):452–8.
CAS
PubMed
CrossRef
Google Scholar