Bosman, P.A., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(2), 174–188 (2003)
CrossRef
Google Scholar
Cheng, R., Jin, Y., Narukawa, K., Sendhoff, B.: A multiobjective evoltuionary algorithm using Gaussian process based inverse modeling. IEEE Transactions on Evolutionary Computation (accepted in 2015)
Google Scholar
Cornell, J.A.: Experiments with mixtures: designs, models, and the analysis of mixture data. John Wiley & Sons (2011)
Google Scholar
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation 18(4), 577–601 (2013)
CrossRef
Google Scholar
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
CrossRef
Google Scholar
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the Congress on Evolutionary Computation, pp. 825–830. IEEE (2002)
Google Scholar
Giagkiozis, I., Fleming, P.J.: Pareto front estimation for decision making. Evolutionary Computation (accepted in 2014)
Google Scholar
Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part II: Handling constraints and extending to an adaptive approach. IEEE Transactions on Evolutionary Computation 18(4), 602–622 (2013)
CrossRef
Google Scholar
Jin, Y., Sendhoff, B.: Connectedness, regularity and the success of local search in evolutionary multi-objective optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3, pp. 1910–1917. IEEE (2003)
Google Scholar
Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Transactions on Evolutionary Computation 18(3), 2450–455 (2014)
CrossRef
Google Scholar
Martí, L., Garcia, J., Berlanga, A., Coello Coello, C., Molina, J.M.: On current model-building methods for multi-objective estimation of distribution algorithms: Shortcommings and directions for improvement. Department of Informatics, Universidad Carlos III de Madrid, Madrid, Spain, Technical Report GIAA2010E001 (2010)
Google Scholar
Okabe, T., Jin, Y., Sendoff, B., Olhofer, M.: Voronoi-based estimation of distribution algorithm for multi-objective optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 1594–1601. IEEE (2004)
Google Scholar
Rasmussen, C.E.: Gaussian processes for machine learning. MIT Press (2006)
Google Scholar
Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712–731 (2007)
CrossRef
Google Scholar
Zhang, Q., Zhou, A., Jin, Y.: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation 12(1), 41–63 (2008)
CrossRef
Google Scholar
Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation 1(1), 32–49 (2011)
CrossRef
Google Scholar