Baños, R., Ortega, J., Gil, C., Márquez, A.L., De Toro, F.: A hybrid meta-heuristic for multi-objective vehicle routing problems with time windows. Comput. Ind. Eng. 65(2), 286–296 (2013)
CrossRef
Google Scholar
Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.: Hyper-heuristics. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)
CrossRef
Google Scholar
Burke, E.K., Silva, J.L., Silva, A., Soubeiga, E.: Multi-objective hyper-heuristic approaches for space allocation and timetabling. In: Meta-heuristics: Progress as Real Problem Solvers, p. 129. Springer (2003)
Google Scholar
Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley (1999)
Google Scholar
Cowling, P.I., Kendall, G., Soubeiga, E.: A hyperheuristic approach to acheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)
CrossRef
Google Scholar
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons, Chichester (2001)
MATH
Google Scholar
Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selection for cross domain heuristic search. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 307–316. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Ehrgott, M.: A discussion of scalarization techniques for multiple objective integer programming. Ann. Oper. Res. 147, 343–360 (2006)
CrossRef
MATH
MathSciNet
Google Scholar
Gomez, J.C., Terashima-Marín, H.: Approximating multi-objective hyper-heuristics for solving 2D irregular cutting stock problems. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010, Part II. LNCS, vol. 6438, pp. 349–360. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Kateb, D.E., Fouquet, F., Bourcier, J., Traon, Y.L.: Artificial mutation inspired hyper-heuristic for runtime usage of multi-objective algorithms. CoRR abs/1402.4442 (2014). http://arxiv.org/abs/1402.4442
Kendall, G., Soubeiga, E., Cowling, P.: Choice function and random hyperheuristics. In: Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning, SEAL, pp. 667–671. Springer (2002)
Google Scholar
Khan Mashwani, W., Salhi, A.: A decomposition-based hybrid multiobjective evolutionary algorithm with dynamic resource allocation. Appl. Soft. Comput. 12(9), 2765–2780 (2012)
CrossRef
Google Scholar
Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, February 2006
Google Scholar
Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)
CrossRef
Google Scholar
Lpez-Ibez, M., Paquete, L., Sttzle, T.: Exploratory analysis of stochastic local search algorithms in biobjective optimization. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 209–222. Springe, Heidelberg (2010)
CrossRef
Google Scholar
Maashi, M., Özcan, E., Kendall, G.: A multi-objective hyper-heuristic based on choice function. Expert Systems with Applications 41(9), 4475–4493 (2014)
CrossRef
Google Scholar
Pappa, G., Ochoa, G., Hyde, M., Freitas, A., Woodward, J., Swan, J.: Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms. Genetic Programming and Evolvable Machines 15(1), 3–35 (2014)
CrossRef
Google Scholar
Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13, 398–417 (2009)
CrossRef
Google Scholar
Sindhya, K., Ruuska, S., Haanp, T., Miettinen, K.: A new hybrid mutation operator for multiobjective optimization with diferential evolution. Soft Comput. 15(10), 2041–2055 (2011)
CrossRef
Google Scholar
Storn, R.: On the usage of differential evolution for function optimization. In: NAFIPS 1996, pp. 519–523. IEEE (1996)
Google Scholar
Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)
CrossRef
MATH
MathSciNet
Google Scholar
Vazquez-Rodriguez, J.A., Petrovic, S.: A mixture experiments multi-objective hyper-heuristic. J. Oper. Res. Soc. 64(11), 1664–1675 (2013)
CrossRef
Google Scholar
Zhang, Q., Li, H.: MOEA/D: A multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
CrossRef
Google Scholar
Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the CEC 2009 special session and competition. Tech. rep., University of Essex and Nanyang Technological University, CES-487 (2008)
Google Scholar
Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: Congress on Evolutionary Computation, pp. 203–208 (2009)
Google Scholar
Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evol. Comput. 16(3), 442–446 (2012)
CrossRef
Google Scholar