Skip to main content

Neutral but a Winner! How Neutrality Helps Multiobjective Local Search Algorithms

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9018)

Abstract

This work extends the concept of neutrality used in single-objective optimization to the multi-objective context and investigates its effects on the performance of multi-objective dominance-based local search methods. We discuss neutrality in single-objective optimization and fitness assignment in multi-objective algorithms to provide a general definition for neutrality applicable to multi-objective landscapes. We also put forward a definition of neutrality when Pareto dominance is used to compute fitness of solutions. Then, we focus on dedicated local search approaches that have shown good results in multi-objective combinatorial optimization. In such methods, particular attention is paid to the set of solutions selected for exploration, the way the neighborhood is explored, and how the candidate set to update the archive is defined. We investigate the last two of these three important steps from the perspective of neutrality in multi-objective landscapes, propose new strategies that take into account neutrality, and show that exploiting neutrality allows to improve the performance of dominance-based local search methods on bi-objective permutation flowshop scheduling problems.

Keywords

  • Neutrality
  • Multi-objective optimization
  • Local search
  • Permutation flowshop scheduling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-15934-8_3
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-15934-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnett, L.: Netcrawling - optimal evolutionary search with neutral networks. In: Proceedings of the 2001 Congress on Evolutionary Computation, CEC 2001, pp. 30–37. IEEE Press (2001)

    Google Scholar 

  2. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – a platform and programming language independent interface for search algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  3. Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (February 2006)

    Google Scholar 

  4. Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.G.: On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems. J. Heuristics 18(2), 317–352 (2012)

    CrossRef  Google Scholar 

  5. Liefooghe, A., Jourdan, L., Talbi, E.G.: A software framework based on a conceptual unified model for evolutionary multiobjective optimization: Paradiseo-moeo. European Journal of Operational Research 209(2), 104–112 (2011)

    CrossRef  MathSciNet  Google Scholar 

  6. Lourenco, H., Martin, O., Stutzle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, International Series in Operations Research & Management Science, vol. 57, pp. 321–353. Kluwer Academic Publishers, Norwell (2002)

    Google Scholar 

  7. Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: NILS: a neutrality-based iterated local search and its application to flowshop scheduling. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 191–202. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  8. Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS Journal on Computing 20(3), 451–471 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operational Research 64(2), 278–285 (1993)

    CrossRef  MATH  Google Scholar 

  10. Verel, S., Collard, P., Clergue, M.: Scuba search : when selection meets innovation. In: Evolutionary Computation, 2004. CEC2004 Evolutionary Computation, 2004. CEC2004., pp. 924–931. IEEE Press, Portland (Oregon) United States (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Eléonore Marmion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Blot, A., Aguirre, H., Dhaenens, C., Jourdan, L., Marmion, ME., Tanaka, K. (2015). Neutral but a Winner! How Neutrality Helps Multiobjective Local Search Algorithms. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9018. Springer, Cham. https://doi.org/10.1007/978-3-319-15934-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15934-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15933-1

  • Online ISBN: 978-3-319-15934-8

  • eBook Packages: Computer ScienceComputer Science (R0)