Skip to main content

Comparing Decomposition-Based and Automatically Component-Wise Designed Multi-Objective Evolutionary Algorithms

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9018))

Included in the following conference series:

Abstract

A main focus of current research on evolutionary multi-objective optimization (EMO) is the study of the effectiveness of EMO algorithms for problems with many objectives. Among the several techniques that have led to the development of more effective algorithms, decomposition and component-wise design have presented particularly good results. But how do they compare? In this work, we conduct a systematic analysis that compares algorithms produced using the MOEA/D decomposition-based framework and the AutoMOEA component-wise design framework. In particular, we identify a version of MOEA/D that outperforms the best known MOEA/D algorithm for several scenarios and confirms the effectiveness of decomposition on problems with three objectives. However, when we consider problems with five objectives, we show that MOEA/D is unable to outperform SMS-EMOA, being often outperformed by it. Conversely, automatically designed AutoMOEAs display competitive performance on three-objective problems, and the best and most robust performance among all algorithms considered for problems with five objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre, H.: Advances on many-objective evolutionary optimization. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2013 Companion, pp. 641–666. ACM (2013)

    Google Scholar 

  2. Beume, N., Fonseca, C.M., López-Ibáñez, M., Paquete, L., Vahrenhold, J.: On the complexity of computing the hypervolume indicator. IEEE Trans. Evol. Comput. 13(5), 1075–1082 (2009)

    Article  Google Scholar 

  3. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  4. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic generation of multi-objective ACO algorithms for the bi-objective knapsack. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 37–48. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic component-wise design of multi-objective evolutionary algorithms. Tech. Rep. TR/IRIDIA/2014-012, IRIDIA, Université Libre de Bruxelles, Belgium, Brussels, Belgium (2014)

    Google Scholar 

  6. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic design of evolutionary algorithms for multi-objective combinatorial optimization. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 508–517. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Comparing decomposition-based and automatically component-wise designed multi-objective evolutionary algorithms (2015). http://iridia.ulb.ac.be/supp/IridiaSupp2015-002/

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., et al. (eds.) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005)

    Chapter  Google Scholar 

  10. Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-objective optimization: an engineering design perspective. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 14–32. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Structural Optimization 4(2), 99–107 (1992)

    Article  Google Scholar 

  12. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  Google Scholar 

  13. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: A short review. In: IEEE CEC, pp. 2419–2426. IEEE Press (2009)

    Google Scholar 

  14. Knowles, J.D., Corne, D.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  15. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  16. Li, M., Yang, S., Liu, X., Shen, R.: A comparative study on evolutionary algorithms for many-objective optimization. In: Purshouse et al. [20], pp. 261–275

    Google Scholar 

  17. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

    Google Scholar 

  18. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)

    Article  Google Scholar 

  19. Nowak, K., Märtens, M., Izzo, D.: Empirical performance of the approximation of the least hypervolume contributor. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 662–671. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  20. Purshouse, R.C., et al. (eds.): Evolutionary Multi-Criterion Optimization - 7th International Conference, EMO 2013, Proceedings. LNCS, vol. 7811, Sheffield, UK, March 19–22. Springer (2013)

    Google Scholar 

  21. Reed, P.M.: Many-objective visual analytics: Rethinking the design of complex engineered systems. In: Purshouse et al. [20], p. 1

    Google Scholar 

  22. Tušar, T., Filipič, B.: Differential evolution versus genetic algorithms in multiobjective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 257–271. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. While, L., Bradstreet, L.: Applying the WFG algorithm to calculate incremental hypervolumes. In: IEEE CEC, pp. 1–8. IEEE Press (2012)

    Google Scholar 

  25. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Trans. Evol. Comput. 16(1), 86–95 (2012)

    Article  Google Scholar 

  26. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  27. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: IEEE CEC, pp. 203–208. IEEE Press (2009)

    Google Scholar 

  28. Zhang, Q., Suganthan, P.N.: Special session on performance assessment of multiobjective optimization algorithms/CEC 2009 MOEA competition (2009). http://dces.essex.ac.uk/staff/qzhang/moeacompetition09.htm

  29. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  30. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., et al. (eds.) EUROGEN, pp. 95–100. CIMNE, Barcelona (2002)

    Google Scholar 

  31. Zitzler, E., Thiele, L., Deb, K.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo C. T. Bezerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bezerra, L.C.T., López-Ibáñez, M., Stützle, T. (2015). Comparing Decomposition-Based and Automatically Component-Wise Designed Multi-Objective Evolutionary Algorithms. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9018. Springer, Cham. https://doi.org/10.1007/978-3-319-15934-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15934-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15933-1

  • Online ISBN: 978-3-319-15934-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics