Skip to main content

A Parallel Multi-Start NSGA II Algorithm for Multiobjective Energy Reduction Vehicle Routing Problem

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9018)

Abstract

The Multiobjective Energy Reduction Vehicle Routing Problem is a variant of the classic Vehicle Routing Problem where simultaneous optimization of more than one objective functions is required. In this paper, the problem is formulated with three different competitive objective functions. The first objective function corresponds to the optimization of the time needed for the vehicle to travel between two customers or between the customer and the depot, the second objective function is the minimization of the distance and the fuel consumption when a delivery route is planned and the third objective function is the minimization of the distance and the fuel consumption when a pickup route is planned. The problem is solved with a modified version of the NSGA II, with a use of more than one population, a multi start method for the creation of the initial population and a Variable Neighborhood Search algorithm for the improvement of the solution of each individual separately. In order to give the quality of the methodology, experiments are conducted using appropriately modified for the Vehicle Routing Problem instances based on the classic Euclidean Traveling Salesman Problem benchmark instances taken from the TSP library.

Keywords

  • Multiobjective energy reduction vehicle routing problem
  • NSGA II
  • VNS
  • GRASP

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-15934-8_23
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-15934-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chand, P., Mohanty, J.R.: Multi objective genetic approach for solving vehicle routing problem. International Journal of Computer Theory and Engineering 5(6), 846–849 (2013)

    CrossRef  Google Scholar 

  2. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (Eds.) Combinatorial Optimization. Wiley, Chichester (1979)

    Google Scholar 

  3. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer (2007)

    Google Scholar 

  4. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    CrossRef  Google Scholar 

  6. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedure. Journal of Global Optimization 6, 109–133 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and its Variations. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  8. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130, 449–467 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Huayu, X., Wenhui, F., Tian, W., Lijun, Y.: An Or-opt NSGA-II algorithm for multi-objective vehicle routing problem with time windows. In: 4th IEEE Conference on Automation Science and Engineering, 309–314 (2008)

    Google Scholar 

  10. Jemai, J., Zekri, M., Mellouli, K.: An NSGA-II Algorithm for the Green Vehicle Routing Problem. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 37–48. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  11. Johnson, D.S., Papadimitriou, C.H.: Computational complexity. In: Lawer, E.L., Lenstra, J.K., Rinnoy Kan, A.H.D., Shmoys, D.B., (Eds.) The traveling salesman problem: a guided tour of combinatorial optimization. Wiley and Sons, 37–85 (1985)

    Google Scholar 

  12. Jozefowiez, N., Semet, F., Talbi, E.-G.: Enhancements of NSGA II and Its Application to the Vehicle Routing Problem with Route Balancing. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 131–142. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  13. Jozefowiez, N., Semet, F., Talbi, E.G.: Multi-objective vehicle routing problems. European Journal of Operational Research 189, 293–309 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Laporte, G.: The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research 59, 345–358 (1992)

    CrossRef  MATH  Google Scholar 

  15. Lawer, E.L., Lenstra, J.K., Rinnoy Kan, A.H.G.R., Shmoys, D.B.: The Traveling Salesman Problem: a guided tour of combinatorial optimization. Wiley and Sons (1985)

    Google Scholar 

  16. Lichtblau, D.: Discrete optimization using Mathematica. In: Callaos, N., Ebisuzaki, T., Starr, B., Abe, J.M., Lichtblau, D. (Eds.) World multi-conference on systemics, cybernetics and informatics (SCI 2002), International Institute of Informatics and Systemics, 16, 169–174 (2002)

    Google Scholar 

  17. Lin, S.: Computer solutions of the traveling salesman problem. Bell Systems Technical Journal 44(10), 2245–2269 (1965)

    CrossRef  MATH  Google Scholar 

  18. Ombuki, B., Ross, B.J., Hanshar, F.: Multi-objective genetic algorithms for vehicle routing problem with time windows. Applied Intelligence 24, 17–30 (2006)

    CrossRef  Google Scholar 

  19. Sarker, R., Coello Coello, C.A.: Assessment methodologies for multiobjective evolutionary algorithms. Evolutionary Optimization, International Series in Operations Research and Management Science 48, 177–195 (2002)

    MathSciNet  Google Scholar 

  20. Toth, P., Vigo, D.: The Vehicle Routing Problem. Monographs on Discrete Mathematics and Applications, Siam (2002)

    CrossRef  MATH  Google Scholar 

  21. Xiao, Y., Zhao, Q., Kaku, I., Xu, Y.: Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Computers and Operations Research 39(7), 1419–1431 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Marinakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Psychas, ID., Marinaki, M., Marinakis, Y. (2015). A Parallel Multi-Start NSGA II Algorithm for Multiobjective Energy Reduction Vehicle Routing Problem. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9018. Springer, Cham. https://doi.org/10.1007/978-3-319-15934-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15934-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15933-1

  • Online ISBN: 978-3-319-15934-8

  • eBook Packages: Computer ScienceComputer Science (R0)