Skip to main content

Parameter Tuning of MOEAs Using a Bilevel Optimization Approach

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9018)

Abstract

The performance of an Evolutionary Algorithm (EA) can be greatly influenced by its parameters. The optimal parameter settings are also not necessarily the same across different problems. Finding the optimal set of parameters is therefore a difficult and often time-consuming task. This paper presents results of parameter tuning experiments on the NSGA-II and NSGA-III algorithms using the ZDT test problems. The aim is to gain new insights on the characteristics of the optimal parameter settings and to study if the parameters impose the same effect on both NSGA-II and NSGA-III. The experiments also aim at testing if the rule of thumb that the mutation probability should be set to one divided by the number of decision variables is a good heuristic on the ZDT problems. A comparison of the performance of NSGA-II and NSGA-III on the ZDT problems is also made.

Keywords

  • Parameter tuning
  • NSGA-II
  • NSGA-III
  • ZDT
  • Bilevel optimization
  • Multi-objective problems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-15934-8_16
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-15934-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bäck, T.: Parallel optimization of evolutionary algorithms. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 418–427. Springer, Heidelberg (1994)

    CrossRef  Google Scholar 

  2. Das, I., Dennis, J.: Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization 8(3), 631–657 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation 18(4), 577–601 (2014)

    CrossRef  Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    CrossRef  Google Scholar 

  5. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation 1(1), 19–31 (2011)

    CrossRef  Google Scholar 

  6. Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)

    CrossRef  Google Scholar 

  7. Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics 16(1), 122–128 (1986)

    CrossRef  Google Scholar 

  8. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: PPSN, pp. 15–26 (1992)

    Google Scholar 

  9. Ugolotti, R., Cagnoni, S.: Analysis of evolutionary algorithms using multi-objective parameter tuning. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO 2014, pp. 1343–1350. ACM, New York (2014)

    Google Scholar 

  10. Wessing, S., Beume, N., Rudolph, G., Naujoks, B.: Parameter tuning boosts performance of variation operators in multiobjective optimization. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 728–737. Springer, Heidelberg (2010)

    Google Scholar 

  11. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Transactions on Evolutionary Computation 16(1), 86–95 (2012)

    CrossRef  Google Scholar 

  12. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. thesis, Shaker Verlag (1999)

    Google Scholar 

  13. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Andersson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Andersson, M., Bandaru, S., Ng, A., Syberfeldt, A. (2015). Parameter Tuning of MOEAs Using a Bilevel Optimization Approach. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9018. Springer, Cham. https://doi.org/10.1007/978-3-319-15934-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15934-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15933-1

  • Online ISBN: 978-3-319-15934-8

  • eBook Packages: Computer ScienceComputer Science (R0)