Skip to main content

A Hybrid Algorithm for Stochastic Multiobjective Programming Problem

  • 1756 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9018)

Abstract

The traditional approach in the solution of stochastic multiobjective programming problem involves transforming the original problem into a deterministic multiobjective programming problem. However, due to the complexity in practical application problems, the closed form of stochastic multiobjective programming problem is usually hard to obtain, and yet, there is surprisingly little literature that addresses this problem. The principal purpose of this paper is to propose a new hybrid algorithm to solve stochastic multiobjective programming problem efficiently, which is integrated with Latin Hypercube Sampling, Monte Carlo simulation, Support Vector Regression and Artificial Bee Colony algorithm. Several numerical examples are presented to illustrate the validity and performance of the hybrid algorithm. The results suggest that the proposed algorithm is very suitable for solving stochastic multiobjective programming problem.

Keywords

  • Stochastic programming
  • Multiobjective programming
  • Pareto efficient solution
  • Hybrid algorithm

This work was supported by National Natural Science Foundation under Grant No. 71171199, and Natural Science Foundation of Shaanxi Province under Grant No. 2013JM1003.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-15934-8_15
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-15934-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miettinen, K.: Nonlinear Multiobjective Optimization. International series in operations research & management science. Kluwer Academic Publishers (1999)

    Google Scholar 

  2. Ozlen, M., Azizoglu, M.: Multi-objective Integer Programming: A General Approach for Generating All Non-dominated Solutions. Euro. J. Oper. Res. 199(1), 25–35 (2009)

    CrossRef  MathSciNet  Google Scholar 

  3. Tarek, E.: Method of Centers Algorithm for Multi-objective Programming Problems. Act. Math. Sci. 29(5), 1128–1142 (2009)

    CrossRef  MATH  Google Scholar 

  4. Arturo, A.R., Ault, G., Galloway, S.: Multi-objective Planning of Distributed Energy Resources: A Review of The State-of-The-Art. Ren. and Sus. Ene. Rev. 14(5), 1353–1366 (2010)

    CrossRef  Google Scholar 

  5. Chen, A., Kim, J., Lee, S., Kim, Y.: Stochastic Multi-objective Models for Network Design Problem. Exp. Sys. with Appl. 37(2), 1608–1619 (2010)

    CrossRef  Google Scholar 

  6. Luis, P., Thomas, S.: Design and Analysis of Stochastic Local Search for The Multi-objective Traveling Salesman Problem. Com. & Oper. Res. 36(9), 2619–2631 (2009)

    CrossRef  MATH  Google Scholar 

  7. Fleury, G., Lacomme, P., Prins, C., Sevaux, M.: A Memetic algorithm for a bi-objective and stochastic CARP. In: Session : Multi Objective Combinatorial Optimization, The 6th Metaheuristics International Conference, MIC 2005, Vienna, Austria, August, 22–26 (2005)

    Google Scholar 

  8. Anton, J.K., Alexander, S., Tito, H.M.: The Sample Average Approximation Method for Stochastic Discrete Optimization. SIAM J. Opt. 12(2), 479–502 (2002)

    CrossRef  Google Scholar 

  9. Zhao, R.Q., Liu, B.D.: Stochastic Programming Models for General Redundancy Optimization Problems. IEEE Tran. on Reliab. 52(2), 181–191 (2003)

    CrossRef  Google Scholar 

  10. Zhou, J., Liu, B.D.: New Stochastic Models for Capacitated Location Allocation Problem. Com. & Ind. Eng. 45(1), 111–125 (2003)

    CrossRef  Google Scholar 

  11. McKay, M.D., Beckman, R.J., Conover, W.J.: A Comparison of Three Methods for Selecting Values of Input Variables in The Analysis of Output from A Computer Code. Technometrics 42(1), 55–61 (2000)

    CrossRef  Google Scholar 

  12. Stein, M.: Large Sample Properties of Simulations Using Latin Hypercube Sampling. Technometrics 29(2), 143–151 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Giunta, A.A., McFarland, J.M., Swiler, L.P., Eldred, M.S.: The Promise and Peril of Uncertainty Quantification Using Response Surface Approximations. Struct. and Infra. Eng. 2(3–4), 175–189 (2006)

    CrossRef  Google Scholar 

  14. Vapnik, V., Steven, E.G., Alex, S.: Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. Adv. in Neur. Inf. Pro. Sys., 281–287 (1997)

    Google Scholar 

  15. Drucker, H., Burges, C., Kaufman, L., Alex, S., Vapnik, V.: Support Vector Regression Machines. Adv. in Neur. Inf. Pro. Sys., 155–161 (1997)

    Google Scholar 

  16. Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical report, Erciyes University (2005)

    Google Scholar 

  17. Karaboga, D., Akay, B.: A Comparative Study of Artificial Bee Colony Algorithm. Appl. Math. Com. 214(1), 108–132 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Wang, Z.T., Guo, J.S., Zheng, M.F., Wang, Y.: Uncertain Multiobjective Travelling Salesman Problem. Euro. J. Oper. Res. 241(2), 478–489 (2014)

    CrossRef  MathSciNet  Google Scholar 

  19. Guo, J.S., Wang, Z.T., Zheng, M.F., Wang, Y.: Uncertain multiobjective redundancy allocation problem of repairable systems based on artificial bee colony algorithm. Chin. J. Aero. (2014). DOI:http://dx.doi.org/10.1016/j.cja.2014.10.014

  20. Chang, C.C., Lin, C.J.: Libsvm: A Library for Support Vector Machines. ACM Tran. on Int. Sys. and Tech. 2(3), 27 (2011)

    Google Scholar 

  21. Liu, B.D., Zhao, R.Q., Wang, G.: Uncertain Programming with Application, fifth edn. Tsinghua University Publication (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zutong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Z., Guo, J., Zheng, M., He, Q. (2015). A Hybrid Algorithm for Stochastic Multiobjective Programming Problem. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9018. Springer, Cham. https://doi.org/10.1007/978-3-319-15934-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15934-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15933-1

  • Online ISBN: 978-3-319-15934-8

  • eBook Packages: Computer ScienceComputer Science (R0)