Games with Type Indeterminate Players

A Hilbert Space Approach to Uncertainty and Strategic Manipulation of Preferences
  • Ariane Lambert-Mogiliansky
  • Ismael Martínez-MartínezEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8951)


We develop a basic framework encoding preference relations on the set of possible strategies in a quantum-like fashion. The Type Indeterminacy model introduces quantum-like uncertainty affecting preferences. The players are viewed as systems subject to measurements. The decision nodes are, possibly non-commuting, operators that measure preferences modulo strategic reasoning. We define a Hilbert space of types and focus on pure strategy TI games of maximal information. Preferences evolve in a non-deterministic manner with actions along the play: they are endogenous to the interaction. We propose the Type Indeterminate Nash Equilibrium as a solution concept relying on best-replies at the level of eigentypes.


Type Indeterminacy Superposition of preferences Hilbert space of types Type Indeterminate Nash Equilibrium 


  1. Busemeyer, J.R., Bruza, P.: Quantum Models of Cognition and Decision. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  2. Danilov, V.I., Lambert-Mogiliansky, A.: Math. Soc. Sci. 55, 315–340 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. Ferreira, J.L., Gilboa, I., Maschler, M.: Games Econ. Beh. 10, 284–317 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  4. Haven, E., Khrennikov, A.: Quantum Social Science. Cambridge University Press, Cambridge (2012)Google Scholar
  5. Harsanyi, J.C.: Rev. Econ. Stud. 21, 204–213 (1953)CrossRefGoogle Scholar
  6. Kahneman, D.: Am. Econ. Rev. 93(5), 1449–1475 (2003)CrossRefGoogle Scholar
  7. Kahneman, D., Tversky, A.: Choice, Values and Frames. Cambridge University Press, Cambridge (2000)Google Scholar
  8. Kahneman, D., Thaler, R.H.: J. Econ. Perspect. 20(1), 221–234 (2006)CrossRefGoogle Scholar
  9. Khrennikov, A.: Ubiquitous Quantum Structure: From Psychology to Finance. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. Kvam, P.D., Busemeyer, J.R., Lambert-Mogiliansky, A.: An empirical test of type-indeterminacy in the Prisoner’s Dilemma. In: Atmanspacher, H., Haven, E., Kitto, K., Raine, D. (eds.) QI 2013. LNCS, vol. 8369, pp. 213–224. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  11. La Mura, P.: J. Math. Psycol. 53, 408–414 (2009)CrossRefzbMATHGoogle Scholar
  12. Lambert-Mogiliansky, A.: Paris School of Economics Working Paper, 2010–20 (2010)Google Scholar
  13. Lambert-Mogiliansky, A., Busemeyer, J.R.: Games 3, 97–118 (2012)CrossRefMathSciNetGoogle Scholar
  14. Lambert-Mogiliansky, A., Zamir, S., Zwirn, H.: J. Math. Psycol. 53, 349–361 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. Loewenstein, G.: Exotic Preferences, Behavioral Economics and Human Motivation. Oxford University Press, Oxford (2008)Google Scholar
  16. Peleg, B., Zaari, M.E.: Rev. Econ. Stud. 40(3), 391–401 (1973)CrossRefzbMATHGoogle Scholar
  17. Schoeffler, S.: Am. Econ. Rev. 42(5), 880–887 (1952)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ariane Lambert-Mogiliansky
    • 1
  • Ismael Martínez-Martínez
    • 2
    Email author
  1. 1.Paris School of EconomicsParisFrance
  2. 2.Düsseldorf Institute for Competition Economics (DICE)Heinrich Heine Universität DüsseldorfDüsseldorfGermany

Personalised recommendations