Conformance Checking Based on Partially Ordered Event Data

  • Xixi Lu
  • Dirk Fahland
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 202)

Abstract

Conformance checking is becoming more important for the analysis of business processes. While the diagnosed results of conformance checking techniques are used in diverse context such as enabling auditing and performance analysis, the quality and reliability of the conformance checking techniques themselves have not been analyzed rigorously. As the existing conformance checking techniques heavily rely on the total ordering of events, their diagnostics are unreliable and often even misleading when the timestamps of events are coarse or incorrect. This paper presents an approach to incorporate flexibility, uncertainty, concurrency and explicit orderings between events in the input as well as in the output of conformance checking using partially ordered traces and partially ordered alignments, respectively. The paper also illustrates various ways to acquire partially ordered traces from existing logs. In addition, a quantitative-based quality metric is introduced to objectively compare the results of conformance checking. The approach is implemented in ProM plugins and has been evaluated using artificial logs.

Keywords

Directed Acyclic Graph Model Move Data Attribute Optimal Alignment Causal Dependency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research is supported by the Dutch Cyber Security program in the context of the PriCE project. We thank Boudewijn van Dongen for his support in this work.

References

  1. 1.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)CrossRefGoogle Scholar
  2. 2.
    Adriansyah, A., van Dongen, B.F., Zannone, N.: Controlling break-the-glass through alignment. In: 2013 International Conference on Social Computing, pp. 606–611. IEEE (2013)Google Scholar
  3. 3.
    Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did i misbehave? diagnostic information in compliance checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 262–278. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 2(2), 182–192 (2012)CrossRefGoogle Scholar
  5. 5.
    Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to reality. Inf. Syst. 47, 220–243 (2015). doi: 10.1016/j.is.2013.12.007 CrossRefGoogle Scholar
  6. 6.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: 2011 15th IEEE International Enterprise Distributed Object Computing Conference (EDOC), pp. 55–64. IEEE (2011)Google Scholar
  7. 7.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Memory-efficient alignment of observed and modeled behavior. BPMcenter.org, Technical report (2013)Google Scholar
  8. 8.
    Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM J. Comput. 1(2), 131–137 (1972)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge (2008) CrossRefMATHGoogle Scholar
  10. 10.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision, generalization and simplicity in process discovery. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a controlled manner. Inf. Syst. 38(4), 585–605 (2013)CrossRefGoogle Scholar
  12. 12.
    Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I., Lenzini, G.: Audit-based compliance control. Int. J. Inf. Secur. 6(2–3), 133–151 (2007)CrossRefGoogle Scholar
  13. 13.
    de Leoni, M., Dumas, M., García-Bañuelos, L.: Discovering branching conditions from business process execution logs. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793, pp. 114–129. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Root cause analysis with enriched process logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 174–186. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Bose, R.P.J.C., Mans, R.S., van der Aalst, W.M.P.: Wanna improve process mining results? In: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 127–134. IEEE (2013)Google Scholar
  16. 16.
    Lorenz, R., Desel, J., Juhás, G.: Models from scenarios. In: Jensen, K., van der Aalst, W.M.P., Balbo, G., Koutny, M., Wolf, K. (eds.) Transactions on Petri Nets and Other Models of Concurrency VII. LNCS, vol. 7480, pp. 314–371. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  17. 17.
    Lassen, K.B., van Dongen, B.F.: Translating message sequence charts to other process languages using process mining. In: Jensen, K., van der Aalst, W.M.P., Billington, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency I. LNCS, vol. 5100, pp. 71–85. Springer, Heidelberg (2008) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xixi Lu
    • 1
  • Dirk Fahland
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations