When Language Meets Language: Anti Patterns Resulting from Mixing Natural and Modeling Language

Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 202)

Abstract

Business process modeling has become an integral part of many organizations for documenting and redesigning complex organizational operations. However, the increasing size of process model repositories calls for automated quality assurance techniques. While many aspects such as formal and structural problems are well understood, there is only a limited understanding of semantic issues caused by natural language. One particularly severe problem arises when modelers employ natural language for expressing control-flow constructs such as gateways or loops. This may not only negatively affect the understandability of process models, but also the performance of analysis tools, which typically assume that process model elements do not encode control-flow related information in natural language. In this paper, we aim at increasing the current understanding of mixing natural and modeling language and therefore exploratively investigate three process model collections from practice. As a result, we identify a set of nine anti patterns for mixing natural and modeling language.

Keywords

Mixing of natural language and modeling language Anti patterns Business process models 

References

  1. 1.
    Rosemann, M.: Potential pitfalls of process modeling: part A. Bus. Process Manage. J. 12(2), 249–254 (2006)CrossRefGoogle Scholar
  2. 2.
    Becker, J., Rosemann, M., von Uthmann, C.: Guidelines of business process modeling. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 30–49. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  3. 3.
    Davis, R.: Aris Design Platform: Advanced Process Modelling and Administration. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in business process models. Inf. Syst. 37(5), 443–459 (2012)CrossRefGoogle Scholar
  5. 5.
    Pittke, F., Leopold, H., Mendling, J.: Spotting terminology deficiencies in process model repositories. In: Nurcan, S., Proper, H.A., Soffer, P., Krogstie, J., Schmidt, R., Halpin, T., Bider, I. (eds.) BPMDS 2013 and EMMSAD 2013. LNBIP, vol. 147, pp. 292–307. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on demand: instantaneous soundness checking of industrial business process models. Data Knowl. Eng. 70(5), 448–466 (2011)CrossRefGoogle Scholar
  7. 7.
    Sun, S., Zhao, J., Nunamaker, J., Liu Sheng, O.: Formulating the data-flow perspective for business process management. Inf. Syst. Res. 17(4), 374–391 (2006)CrossRefGoogle Scholar
  8. 8.
    Sidorova, N., Stahl, C., Trcka, N.: Soundness verification for conceptual workflow nets with data: early detection of errors with the most precision possible. Inf. Syst. 36(7), 1026–1043 (2011)CrossRefGoogle Scholar
  9. 9.
    Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process model repositories. Comput. Ind. 62(5), 467–486 (2011)CrossRefGoogle Scholar
  10. 10.
    Polyvyanyy, A., García-Bañuelos, L., Dumas, M.: Structuring acyclic process models. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 276–293. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  11. 11.
    Leopold, H., Smirnov, S., Mendling, J.: Recognising activity labeling styles in business process models. Enterp. Model. Inf. Syst. Architect. 6(1), 16–29 (2011)Google Scholar
  12. 12.
    Leopold, H., Eid-Sabbagh, R.H., Mendling, J., Azevedo, L.G., Baião, F.A.: Detection of naming convention violations in process models for different languages. Decis. Support Syst. 56, 310–325 (2013)CrossRefGoogle Scholar
  13. 13.
    Dehnert, J., Rittgen, P.: Relaxed soundness of business processes. In: Dittrich, K.R., Geppert, A., Norrie, M. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 157–170. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  14. 14.
    van der Aalst, W.M.P.: Workflow verification: finding control-flow errors using petri-net-based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  15. 15.
    van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and verification of properties: an approach based on temporal logic. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  16. 16.
    Gruhn, V., Laue, R.: Detecting common errors in event-driven process chains by label analysis. Enterp. Model. Inf. Syst. Architect. 6(1), 3–15 (2011)Google Scholar
  17. 17.
    Keller, G., Teufel, T.: SAP(R) R/3 Process Oriented Implementation: Iterative Process Prototyping. Addison-Wesley, Boston (1998)Google Scholar
  18. 18.
    Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)CrossRefGoogle Scholar
  19. 19.
    Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  20. 20.
    Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt, H.: Probabilistic optimization of semantic process model matching. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  21. 21.
    Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on behavioral profiles of process models. IEEE Trans. Softw. Eng. 37(3), 410–429 (2011)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.WU ViennaViennaAustria

Personalised recommendations