Skip to main content

A Comparative Study of Algorithms for Solving the Multiobjective Open-Pit Mining Operational Planning Problems

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9019)

Abstract

This work presents a comparison of results obtained by different methods for the Multiobjective Open-Pit Mining Operational Planning Problem, which consists of dynamically and efficiently allocating a fleet of trucks with the goal of maximizing the production while reducing the number of trucks in operation, subject to a set of constraints defined by a mathematical model. Three algorithms were used to tackle instances of this problem: NSGA-II, SPEA2 and an ILS-based multiobjective optimizer called MILS. An expert system for computational simulation of open pit mines was employed for evaluating solutions generated by the algorithms. These methods were compared in terms of the quality of the solution sets returned, measured in terms of hypervolume and empirical attainment function (EAF). The results are presented and discussed.

Keywords

  • Open pit mines
  • Dispatch
  • Multiobjective optimization
  • Performance comparison

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-15892-1_29
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-15892-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandre, R., Vasconcelos, J., Campelo, F.: Additional electronic files. http://cpdee.ufmg.br/~fcampelo/files/MOPMOPP/ (2014)

  2. Chicano, F., Alba, E.: Exact computation of the expectation curves of the bit-flip mutation using landscapes theory. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2011, Dublin, Ireland, pp. 2027–2034 (July 2011)

    Google Scholar 

  3. Coelho, V., Souza, M., Coelho, I., Guimarães, F., Lust, T., Cruz, R.C.: Multi-objective approaches for the open-pit mining operational planning problem. Electronic Notes in Discrete Mathematics 39, 233–240 (2012)

    CrossRef  Google Scholar 

  4. Coello, C., Lamont, G., Veldhuizen, D.: Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine 1(1), 28–36 (2006)

    CrossRef  Google Scholar 

  5. Coello, C., Lamont, G., Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problem, 2nd edn. Springer (2007)

    Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Evolutionary Computation 6(2), 182–187 (2002)

    CrossRef  Google Scholar 

  7. Dias, A., Vasconcelos, J.: Multiobjective genetic algorithms applied to solve optimization problems. IEEE Transactions on Magnetics 38(2), 1133–1136 (2001)

    CrossRef  Google Scholar 

  8. Doig, P., Kizil, M.: Improvements in truck requirement estimations using detailed haulage analysis. In: 3th Coal Operators Conference, The Australasian Institute of Mining and Metallurgy and Mine Managers Association of Australia, pp. 368–375 (February 2013)

    Google Scholar 

  9. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6(2), 109–133 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Fonseca, C.M., da Fonseca, V.G., Paquete, L.: Exploring the Performance of Stochastic Multiobjective Optimisers with the Second-Order Attainment Function. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 250–264. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  11. Geiger, M.: The PILS metaheuristic and its application to multi-objective machine scheduling. In: Kfer, K.H., Rommelfanger, H., Tammer, C., Winkler, K. (eds.) Multicriteria Decision Making and Fuzzy Systems Theory, Methods and Applications. pp. 43–58. Shaker Verlag, Industriemathematik und Angewandte Mathematik (2006)

    Google Scholar 

  12. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley (1989)

    Google Scholar 

  13. Hansen, P., Mladenovic, N., Pérez, J.M.: Variable neighbourhood search: methods and applications. 4OR 6(4), 319–360 (2008)

    Google Scholar 

  14. He, M., Wei, J., Lu, X., Huang, B.: The genetic algorithm for truck dispatching problems in surface mine. Information Technology Journal 9, 710–714 (2010)

    CrossRef  Google Scholar 

  15. Ibáñez, M., Stützle, T., Paquete, L.: Graphical tools for the analysis of bi-objective optimization algorithms. In: Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2010, pp. 1959–1962. ACM, New York (2010)

    Google Scholar 

  16. ILOG: Users Manual. IBM (2008)

    Google Scholar 

  17. Kelton, W., Sadowski, R., Sturrock, D.: Simulation with Arena. McGraw-Hill series in industrial engineering and management science, 4. ed. internat. ed. McGraw-Hill Higher Education, Boston (2007)

    Google Scholar 

  18. Loureno, H., Martin, O., Stützle, T.: Iterated local search. ArXiv Mathematics e-prints. (Feburary 2001), arXiv:math/0102188

  19. Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers & Operations Research 24(11), 1097–1100 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Montgomery, D.: Design and Analysis of Experiments, 7th edn. Wiley (2008)

    Google Scholar 

  21. Nel, S., Kizil, M., Knights, P.: Improving truck-shovel matching. In: 35TH APCOM Symposium, The Australasian Institute of Mining and Metallurgy, Wollongong, NSW, pp. 381–391 (September 2011)

    Google Scholar 

  22. Souza, M., Coelho, I., Ribas, S., Santos, H., Merschmann, L.: A hybrid heuristic algorithm for the open-pit-mining operational planning problem. European Journal of Operational Research 207(2), 1041–1051 (2010)

    CrossRef  MATH  Google Scholar 

  23. Subtil, R., Silva, D., Alves, J.: A practical approach to truck dispatch for open pit. In: 35th International Symposium on Application of Computers in the Minerals Industry (35th APCOM) pp. 765–777 (2011)

    Google Scholar 

  24. Tan, Y., Chinbat, U., Miwa, K., Takakuwa, S.: Operation modeling and analysis of open pit copper mining using GPS tracking data. In: Proceedings of the 2012 Winter Simulation Conference. pp. 1–12. IEEE, Berlin (2012)

    Google Scholar 

  25. Topal, E., Ramazan, S.: A new MIP model for mine equipment scheduling by minimizing maintenance cost. European Journal of Operational Research 207(2), 1065–1071 (2010)

    CrossRef  MATH  Google Scholar 

  26. Topal, E., Ramazan, S.: Mining truck scheduling with stochastic maintenance cost. Journal of Coal Science and Engineering (China) 18(3), 313–319 (2012)

    CrossRef  Google Scholar 

  27. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Giannakoglou, K., et al. (eds.) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100. International Center for Numerical Methods in Engineering (CIMNE) (2002)

    Google Scholar 

  28. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Frederico Alexandre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Alexandre, R.F., Campelo, F., Fonseca, C.M., de Vasconcelos, J.A. (2015). A Comparative Study of Algorithms for Solving the Multiobjective Open-Pit Mining Operational Planning Problems. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9019. Springer, Cham. https://doi.org/10.1007/978-3-319-15892-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15892-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15891-4

  • Online ISBN: 978-3-319-15892-1

  • eBook Packages: Computer ScienceComputer Science (R0)