Skip to main content
  • 1524 Accesses

Abstract

For the conventional NMOS LC-VCO as shown in Fig. 3.7, a low supply voltage would result in the decrease of the output signal amplitude Vo and thus the degradation of the phase-noise performance since the phase noise is inversely proportional to Vo 2 according to (3.19). For example, if the supply voltage is reduced from 1.2 to 0.3 V, the maximum Vo would roughly decrease from 2.4 to 0.6 V (ignoring the voltage headroom required by the current-biasing transistor). As a result, the minimum achievable phase noise will degrade by 12 dB assuming all other parameters, including the tank capacitance, the tank QT, the oscillation frequency ω 0, and the offset frequency Δω, are kept the same. Such a phase-noise degradation is unacceptable for many cellular standards with stringent phase-noise requirements such as GSM requiring −162 dBc/Hz at 20-MHz frequency offset from a carrier frequency of 900 MHz [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The FoM is still kept the same according to (3.30) since the current to sustain the maximum Vo also reduces by 4 times, and thus the power consumption reduces by 16 times. However, at low supply voltage, even the power budget can be increased, and the phase noise could not be improved anymore since the oscillator would enter the voltage-limited region.

References

  1. Hung, C. -M., Barton, N., Lee, M. -C., Leipold, D. (2004, June). An ultra low phase noise GSM local oscillator in a 0.09 μm standard digital CMOS process with no high-Q inductors. IEEE Radio-Frequency Integrated Circuits Symposium (pp. 483–486).

    Google Scholar 

  2. Kwok, K., & Luong, H. C. (2005). Ultra-low-voltage high-performance CMOS VCOs using transformer feedback. IEEE Journal of Solid-State Circuits, 40, 652–660.

    Article  Google Scholar 

  3. Kwok K., & Luong, H. C. (2003, September). A 0.35-V 1.46-mW low-phase-noise oscillator with transformer feedback in standard 0.18-μm CMOS process. IEEE Custom Integrated Circuits Conference (pp. 551–554).

    Google Scholar 

  4. Ng, A. W. L., & Luong, H. C. (2006, February). A 1 V 17 GHz 5 mW quadrature CMOS VCO based on transformer coupling. ISSCC Digest of Technical Papers (pp. 198–199). San Francisco: IEEE.

    Google Scholar 

  5. Ng, A. W. L., & Luong, H. C. (2007). A 1-V 17-GHz 5-mW CMOS quadrature VCO based on transformer coupling. IEEE Journal of Solid-State Circuits, 42, 1933–1941.

    Article  Google Scholar 

  6. Hartley, R. (1920, October 26). Oscillation generator. US Patent, No. 1,356,763.

    Google Scholar 

  7. Razavi, B. (2001). Design of analog CMOS integrated circuits. Boston: McGraw-Hill.

    Google Scholar 

  8. Wang, H. (2002, May). Oscillator circuit having maximized signal power and reduced phase noise. US Patent, No. 6,229,406.

    Google Scholar 

  9. Danesh, M., & Long, J. (2002). Differentially driven symmetric microstrip inductors. IEEE Transactions on Microwave Theory and Techniques, 50, 332–341.

    Article  Google Scholar 

  10. Tiebout, M. (2001). Low-power low-phase-noise differential tuned quadrature VCO design in standard CMOS. IEEE Journal of Solid-State Circuits, 36, 1018–1024.

    Article  Google Scholar 

  11. Mazzanti, A., & Andreani, P. (2008). Class-C harmonic CMOS VCOs, with a general result on phase noise. IEEE Journal of Solid-State Circuits, 43, 2716–2729.

    Article  Google Scholar 

  12. Okada, K., Nomiyama, Y., Murakami, R., & Matsuzawa, A. (2009, June). A 0.114mW dual-conduction class-C CMOS VCO with 0.2-V power supply. IEEE VLSI Circuits Symposium (pp. 228–229). Kyoto, Japan: IEEE.

    Google Scholar 

  13. Brown, T. W., Farhabakhshian, F., Roy, A. G., Fiez, T. S., & Mayaram, K. (2011). A 475 mV, 4.9 GHz enhanced swing differential colpitts VCO with phase noise of −136 dBc/Hz at a 3 MHz offset frequency. IEEE Journal of Solid-State Circuits, 46, 1782–1795.

    Article  Google Scholar 

  14. Taghivand, M., Ghahramani, M., & Flynn, M. P. (2011, November). A low voltage sub 300μW 2.5GHz current reuse VCO. IEEE Asian Solid-State Circuits Conference (pp. 369–372). Kobe, Japan: IEEE.

    Google Scholar 

  15. Yao, C. W., & Willson, A. N. (2006, February). A phase-noise reduction technique for quadrature LC-VCO with phase-to-amplitude noise conversion. ISSCC Digest of Technical Papers (pp. 196–197). San Francisco: IEEE.

    Google Scholar 

  16. Kral, A., Behbahani, F., & Abidi, A. A. (1998). RF CMOS oscillators with switched tuning. IEEE Custom Integrated Circuits Conference (pp. 555–558). Santa Clara, CA: IEEE.

    Google Scholar 

  17. Lo, C.-W., & Luong, H. C. (2007). A 1.5-V 900-MHz monolithic CMOS fast-switching frequency synthesizer for wireless applications. IEEE Journal of Solid-State Circuits, 37, 459–470.

    Google Scholar 

  18. Rofougaran, A., Rael, J., Rofougaran, M., & Abidi, A. A. (1996, February). A 900 MHz CMOS LC-oscillator with quadrature outputs. ISSCC Digest of Technical Papers (pp. 392–393). San Francisco: IEEE.

    Google Scholar 

  19. Andreani, P. (2002, February). A low-phase-noise low-phase-error 1.8 GHz quadrature CMOS VCO. IEEE ISSCC Digest of Technical Papers (pp. 290–292). San Francisco: IEEE.

    Google Scholar 

  20. Kim, H.-R., Cha, C.-Y., Oh, S.-M., Yang, M.-S., & Lee, S.-G. (2004). A very low-power quadrature VCO with back-gate coupling. IEEE Journal of Solid-State Circuits, 39, 1626–1634.

    Article  Google Scholar 

  21. Gierkink, S. L. J., Levantino, S., Frye, R. C., Samori, C., & Boccuzzi, V. (2003). A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling. IEEE Journal of Solid-State Circuits, 38, 1148–1154.

    Article  Google Scholar 

  22. Vancorenland, P., & Steyaert, M. S. J. (2002). A 1.57-GHz fully integrated very low-phase-noise quadrature VCO. IEEE Journal of Solid-State Circuits, 37, 653–656.

    Article  Google Scholar 

  23. Cusmai, G., Repossi, M., Albasini, G., Mazzanti, A., & Svelto, F. (2007). A magnetically tuned quadrature oscillator. IEEE Journal of Solid-State Circuits, 42, 2870–2877.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luong, H.C., Yin, J. (2016). Ultralow-Voltage VCO and QVCO Using Transformer Technique. In: Transformer-Based Design Techniques for Oscillators and Frequency Dividers. Springer, Cham. https://doi.org/10.1007/978-3-319-15874-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15874-7_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15873-0

  • Online ISBN: 978-3-319-15874-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics