Development of a 3-DOF Compliant Robotic Local Structure with Large Twist Angle

  • S. KurtenbachEmail author
  • J. Siebrecht
  • D. Schoenen
  • M. Hüsing
  • B. Corves
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 30)


This paper presents the development of a compliant wrist joint (robotic local structure) enabling large twist angles. The result is a spherical joint with three degrees of freedom whose development is introduced starting with a general overview on suited compliant joints and the derivation of the requirements. A systematic structural synthesis and subsequently a dimensional synthesis using the pseudo-rigid-body-model is conducted. Finally, the CAD-Model is shown. The compliant robotic local structure is used in a handling system developed at the IGM facilitating a quick adaption of the kinematic structure to a new motion task through a modular and versatile concept. Several parallel kinematic robotic arms integrate an object in the kinematic structure by adapting to the object with the end-effectors.


Large twist angle Compliant robotic local structure Pseudo-rigid-body-model Wrist joint Reconfigurable handling system Spherical linkage 



As part of this work was carried out at the Cluster of Excellence at RWTH Aachen “Integrative production technology for high-wage countries (EXC 128)”; the authors would like to thank The German Research Foundation for their support.


  1. Dunning AG, Tolou N, Herder JL (2011) Review article: inventory of platforms towards the design of a statically balanced, six degrees of freedom compliant precision stage. Mech Sci 2(2):157–168. doi: 10.5194/ms-2-157-2011 CrossRefGoogle Scholar
  2. Goldfarb M, Speich JE (1999) A well-behaved revolute flexure joint for compliant mechanism design. J Mech Des 121(3):424. doi: 10.1115/1.2829478 CrossRefGoogle Scholar
  3. Haringx JA (1949) The cross-spring pivot as a constructional element. Appl Sci Res 1(1):313–332. doi: 10.1007/BF02120338 CrossRefGoogle Scholar
  4. Howell LL (2001) Compliant mechanisms. Wiley, New York. ISBN 9780471384786Google Scholar
  5. Howell LL, Magleby SP, Olsen BM (2013) Handbook of compliant mechanisms. Wiley, Chichester. ISBN 978-1-119-95345-6CrossRefGoogle Scholar
  6. Lobontiu N, Paine JS, Garcia E, Goldfarb M (2002) Design of symmetric conic-section flexure hinges based on closed-form compliance equations. Mech Mach Theory 37(5):477–498. doi: 10.1016/S0094-114X(02)00002-2 CrossRefzbMATHGoogle Scholar
  7. Müller R, Corves B, Hüsing M, Esser M, Riedel M, Vette M (2009) Rekonfigurierbares selbstoptimierendes Bauteilhandling. 8. Kolloquium Getriebe-technik Aachen 2009. Verlagshaus Mainz, Aachen, pp 297–311. ISBN 3-86130-984-XGoogle Scholar
  8. Müller R, Riedel M, Vette M, Corves B, Esser M, Hüsing M (2010) Reconfigurable self-optimising handling system. In: Ratchev S (ed) IPAS 2010, IFIP AICT, vol 315. Springer, Heidelberg, pp 255–262. ISBN 978-3-642-11597-4CrossRefGoogle Scholar
  9. Paros JM, Weisbord L (1965) How to design flexure hinges. Mach Des 25:151–156Google Scholar
  10. Riedel M, Nefzi M, Huesing M, Corves B (2008) An adjustable gripper as a reconfigurable robot with a parallel structure. In: Proceedings of the second international workshop on fundamental issues and future research directions for parallel mechanisms and manipulators, Montpellier, France, pp 253–260Google Scholar
  11. Riedel M, Nefzi M, Corves B (2010) Performance analysis and dimensional synthesis of a six DOF reconfigurable parallel manipulator. In: IFToMM symposium on mechanism design for robotics 2012, Mexico City, 28–30 Sept 2010Google Scholar
  12. Trease BP, Moon Y-M, Kota S (2005) Design of large-displacement compliant joints. J Mech Des 127(4):788. doi: 10.1115/1.1900149 CrossRefGoogle Scholar
  13. Zentner L (2012) Klassifikation nachgiebiger Mechanismen und Aktuatoren. In: Zentner L (Hrsg) Mechanismentechnik in Illmenau, Budapest und Niš, Technische Universität Ilmenau, Univ.-Verl, Ilmenau, 29–31 Aug 2012. ISBN 978-3-86360-034-1Google Scholar
  14. Zentner L, Linß S, Erbe T (2011) On polynomial flexure hinges for increased deflection and an approach for simplified manufacturing. In: 13th IFToMM world congress in mechanism and machine science, Guanajuato, 19–25 June 2011Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • S. Kurtenbach
    • 1
    Email author
  • J. Siebrecht
    • 1
  • D. Schoenen
    • 1
  • M. Hüsing
    • 1
  • B. Corves
    • 1
  1. 1.Institut für Getriebetechnik und MaschinendynamikRWTH Aachen UniversityAachenGermany

Personalised recommendations