Overview and Classification of Flexure Hinge Based Micromanipulators

  • D. SchoenenEmail author
  • I. Prause
  • S. Palacios
  • B. Corves
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 30)


It is difficult to find a comprehensive classification containing all aspects of robots, not to mention of micromanipulators, in present literature. With the focus on design and kinematic attributes, the objective of this paper is to create a classification of robots which can also be applied for micromanipulators. The different attributes are identified and discussed. Existing micromanipulators are grouped according to this classification scheme and a clear overview of their specific structural characteristics and performance is given. Thus three different groups of micromanipulators can be identified.


Micromanipulator Overview Classification Compliance Flexure hinge 



The research work reported here was possible within a joint research project, which also includes the Laboratory for Machine Tools and Production Engineering and the Facility for Electron Microscopy of RWTH Aachen and is funded by the German Grant Authority DFG.


  1. Beltrami I, Joseph C, Clavel R, Bacher JP, Bottinelli S (2004) Micro- and nanoelectric-discharge machining. J Mater Process Technol 149(1–3):263–265. doi: 10.1016/j.jmatprotec.2004.03.002 CrossRefGoogle Scholar
  2. Bleicher F (2003) Parallelkinematische Werkzeugmaschinen, NWV Technik. NWV Neuer Wissenschaftlicher Verlag, WienGoogle Scholar
  3. Cao W, Ding H, Zi B, Che Z (2013) New structural representation and digital-analysis platform for symmetrical parallel mechanisms. Int J Adv Robot Syst 10:1. doi: 10.5772/56380 Google Scholar
  4. Corves B, Müller R (2013) Kinematik, Dynamik und Anwendungen in der Robotik. Lecture notes. RWTH Aachen UniversityGoogle Scholar
  5. Fazenda N, Lubrano E, Rossopoulos S, Clavel R (2006) Calibration of the 6 DOF high-precision flexure parallel robot “Sigma 6”. In: Neugebauer R (ed) Parallel kinematic machines in research and practice [proceedings], vol 33, Reports from the IWU. Verl. Wiss. Scripten, Zwickau, pp 379–398Google Scholar
  6. Garg V, Nokleby SB, Carretero JA (2009) Wrench capability analysis of redundantly actuated spatial parallel manipulators. Mech Mach Theory 44(5):1070–1081. doi: 10.1016/j.mechmachtheory.2008.05.011 CrossRefzbMATHGoogle Scholar
  7. Haun M (2007) Handbuch Robotik. Programmieren und Einsatz intelligenter Roboter. Springer, Berlin/Heidelberg/New YorkzbMATHGoogle Scholar
  8. Howell LL (2001) Compliant mechanisms. Wiley, New YorkGoogle Scholar
  9. Howell LL, Magleby SP, Olsen BM (eds) (2013) Handbook of compliant mechanisms. Wiley, ChichesterGoogle Scholar
  10. Lu TF, Handley DC, Yong YK, Eales C (2004) A three-DOF compliant micromotion stage with flexure hinges. Ind Robot Int J 31(4):355–361. doi: 10.1108/01439910410541873 CrossRefGoogle Scholar
  11. Lubrano E, Clavel R (2010) Compensation of thermal effects and cutting-forces acting on ultra high-precision robots. In: Borgmann H (ed) Conference proceedings/Actuator 10, 12th international conference on new actuators & 6th international exhibition on smart actuators and drive systems, Bremen, 14–16 June 2010. WFB, Div. Messe Bremen, Bremen, pp 391–396Google Scholar
  12. Naval M (1989) Roboter-Praxis. Aufbau, Funktion und Einsatz von Industrierobotern, 1st edn, Vogel-Fachbuch Technik. Vogel, WürzburgGoogle Scholar
  13. Pham HH, Chen IM (2006) Micro-manipulator design based on selectively actuated flexure parallel mechanisms. In: 2006 I.E. conference on robotics, automation and mechatronics, Bangkok, pp 1–8Google Scholar
  14. Pham P, Regamey YJ, Fracheboud M, Clavel R (2005) Orion MinAngle: a flexure-based, double-tilting parallel kinematics for ultra-high precision applications requiring high angles of rotation. Tokyo, ISR Proceedings, 2005. In: 36th international symposium on robotics, TokyoGoogle Scholar
  15. Pierrot F (2002) Parallel mechanisms and redundancy. In: 1st International Colloquium, Collaborative Research Centre 562, Braunschweig, pp 261–277Google Scholar
  16. Raatz A (2006) Stoffschlüssige Gelenke aus pseudo-elastischen Formgedächtnislegierungen in Pararellrobotern, Schriftenreihe des Instituts für Werkzeugmaschinen und Fertigungstechnik der TU Braunschweig. Vulkan-Verl, EssenGoogle Scholar
  17. Röse A (2011) Parallelkinematische Mechanismen zum intrakorporalen Einsatz in der laparoskopischen Chirurgie. Inst. für Elektromechanische Konstruktionen, DarmstadtGoogle Scholar
  18. Shuo Hung Chang, Chung Kai Tseng, Hon Chan Chien (1999) An ultra-precision XYΘZ piezo-micropositioner Part II: experiment and performance. IEEE Trans Ultrason Ferroelect Freq Contr 46(4):906–912. doi: 10.1109/58.775657 CrossRefGoogle Scholar
  19. Tang X, Chen IM, Yang G (2006) Nonlinear modeling method of a large-displacement and decoupled XYZ flexure parallel mechanism. In: 2006 9th international conference on control, automation, robotics and vision, Singapore, pp 1–6Google Scholar
  20. Tung-Li Wu, Jia-Hao Chen, Shuo-Hung Chang (2008) A six-DOF prismatic-spherical-spherical parallel compliant nanopositioner. IEEE Trans Ultrason Ferroelect Freq Contr 55(12):2544–2551. doi: 10.1109/TUFFC.2008.970 CrossRefGoogle Scholar
  21. Yang G, Teo TJ, Chen IM, Lin W (2011) Analysis and design of a 3-DOF flexure-based zero-torsion parallel manipulator for nano-alignment applications. In: 2011 I.E. international conference on robotics and automation (ICRA), Shanghai, pp 2751–2756Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • D. Schoenen
    • 1
    Email author
  • I. Prause
    • 1
  • S. Palacios
    • 1
  • B. Corves
    • 1
  1. 1.Institut für Getriebetechnik und MaschinendynamikRWTH Aachen UniversityAachenGermany

Personalised recommendations