Skip to main content

Optimisation of Digraphs-Based Realisations for Polynomials of One and Two Variables

  • Conference paper

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 350)

Abstract

This paper proposes a set of modifications to the algorithm proposed earlier, that finds a complete set of minimal solutions for the characteristic polynomial on basis of digraphs theory and parallel computation. Changes proposed allow for parallelisation of previously sequential part of the algorithm, accurate estimation of number of solutions created and speed-up of both parts of the algorithm. Reduction of algorithm’s complexity is greatest for monomials consisting of only one variable and for one-variable polynomial a complete set of minimal solutions can be found as fast as in linearithmic time.

Keywords

  • digraphs
  • parallel computation
  • characteristic polynomial
  • minimal realisation
  • positive systems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-15796-2_8
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-15796-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications. Springer, London (2009)

    CrossRef  Google Scholar 

  2. Benvenuti, L., Farina, L.: A tutorial on the positive realization problem. IEEE Transactions on Automatic Control 49(5), 651–664 (2004)

    CrossRef  MathSciNet  Google Scholar 

  3. Bona, M.: Combinatorics of Permutations, 2nd edn. Chapman Hall, CRC Press (2012)

    Google Scholar 

  4. Fornasini, E., Marchesini, G.: State-space realization theory of two-dimensional filters. IEEE Trans. Autom. Contr. 21, 481–491 (1976)

    CrossRef  MathSciNet  Google Scholar 

  5. Fornasini, E., Valcher, M.E.: Directed graphs, 2D state models, and characteristic polynomials of irreducible matrix pairs. Linear Algebra and Its Applications 263, 275–310 (1997)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Fornasini, E., Valcher, M.E.: On the positive reachability of 2D positive systems. In: Benvenuti, L., De Santis, A., Farina, L. (eds.) Positive Systems. LNCIS, vol. 294, pp. 297–304. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  7. Hryniów, K., Markowski, K.A.: Conditions for digraphs representation of the characteristic polynomial. In: Young Scientists Towards the Challenges of Modern Technology, pp. 77–80 (2014)

    Google Scholar 

  8. Hryniów, K., Markowski, K.A.: Parallel digraphs-building algorithm for polynomial realisations. In: Proceedings of 2014 15th International Carpathian Control Conference (ICCC), pp. 174–179 (2014), http://dx.doi.org/10.1109/CarpathianCC.2014.6843592

  9. Hryniów, K., Markowski, K.A.: Reachability index calculation by parallel digraphs-building. In: 19th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, September 2-5, pp. 808–813 (2014), http://dx.doi.org/10.1109/MMAR.2014.6957460

  10. Hryniów, K., Markowski, K.A.: Digraphs minimal realisations of state matrices for fractional positive systems. In: Szewczyk, Zieliński, Kaliczyńska (eds.) Progress in Automation, Robotics and Measuring Techniques. AISC, vol. 350, pp. 63–72 (2015)

    Google Scholar 

  11. Hryniów, K., Markowski, K.A.: Digraphs-building of complete set of minimal characteristic polynomial realisations as means for solving minimal realisation problem of nD systems. International Journal of Control (Submitted to)

    Google Scholar 

  12. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer and System Sciences 62, 367–375 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Kaczorek, T.: Two-dimensional Linear Systems. Springer, London (1985)

    MATH  Google Scholar 

  14. Kaczorek, T.: Positive 1D and 2D systems. Springer, London (2001)

    Google Scholar 

  15. Kurek, J.: The general state-space model for a two-dimensional linear digital system. IEEE Trans. Austom. Contr. 30, 600–602 (1985)

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Wallis, W.D.: A Beginner’s Guide to Graph Theory. Biiokhäuser (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Hryniów .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hryniów, K., Markowski, K.A. (2015). Optimisation of Digraphs-Based Realisations for Polynomials of One and Two Variables. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Progress in Automation, Robotics and Measuring Techniques. ICA 2015. Advances in Intelligent Systems and Computing, vol 350. Springer, Cham. https://doi.org/10.1007/978-3-319-15796-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15796-2_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15795-5

  • Online ISBN: 978-3-319-15796-2

  • eBook Packages: EngineeringEngineering (R0)