Abstract
In this paper we present an approach to improve power and cooling capacity management in a data center by taking into account knowledge about applications and workloads. We apply power capping techniques and proper cooling infrastructure configuration to achieve savings in energy and costs. To estimate values of a total energy consumption and costs we simulate both IT software/hardware and cooling infrastructure at once using the CoolEmAll SVD Toolkit. We also investigated the use of power capping to adjust data center operation to variable power supply and pricing. By better adjusting cooling infrastructure to specific types of workloads, we were able to find a configuration which resulted in energy, OPEX and CAPEX savings in the range of 4–25 %.
Keywords
- Data centers
- Energy efficiency
- Simulations
- Heat-aware
- Metrics
- OPEX
- CAPEX
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
AICIA Grupo de Termotecnia de la Escuela Superior de Ingenieros Industriales de la Universidad de Sevilla. Calificación de Eficiencia Energética de Edificios. Condiciones de aceptación de procedimientos alternativos a LIDER y CALENER. Gobierno de España. Ministerio de vivienda. Ministerio de Industria, Turismo y Comercio. Instituto para la diversificación y ahorro de energía (2009)
The All4Green project website. http://www.all4green-project.eu
Avelar, V., Azevedo, D., French, A.: The Green Grid. White paper # 49. PUE ™: A comprehensive examination of the metric (2012)
Chen, H., Hankendi, C., Caramanis, M.C., Coskun, A.K.: Dynamic server power capping for enabling data center participation in power markets. In: Proceedings of the International Conference on Computer-Aided Design, ICCAD 2013, pp. 122–129. IEEE Press, Piscataway (2013)
vor dem Berge, M., Da Costa, G., Kopecki, A., Oleksiak, A., Pierson, J.-M., Piontek, T., Volk, E., Wesner, S.: Modeling and simulation of data center energy-efficiency in CoolEmAll. In: Huusko, J., de Meer, H., Klingert, S., Somov, A. (eds.) E\(^2\)DC 2012. LNCS, vol. 7396, pp. 25–36. Springer, Heidelberg (2012)
Da Costa, G., Hlavacs, H., Hummel, K., Pierson, J.-M.: Modeling the energy consumption of distributed applications. In: Ahmad, I., Ranka, S. (eds.) Handbook of Energy-Aware and Green Computing. Chapman & Hall, CRC Press, Baco Raton (2012)
Kemma, R., Park, D.: Methodology Study Eco-design of Energy-using Products MEEUP. Final report. VHK. Delft, The Netherlands (2005). http://ec.europa.eu/enterprise/policies/sustainable-business/ecodesign/methodology/index_en.htm. Accessed 10 Jan 2014
Kontorinis, V., Zhang, L.E., Aksanli, B., Sampson, J., Homayoun, H., Pettis, E., Tullsen, D.M., Simunic Rosing, T.: Managing distributed UPS energy for effective power capping in data centers. In: 2012 39th Annual International Symposium on Computer Architecture (ISCA), pp. 488–499, 9–13 June 2012. doi:10.1109/ISCA.2012.6237042
Kurowski, K., Oleksiak, A., Piatek, W., Piontek, T., Przybyszewski, A., Weglarz, J.: DCworms - a tool for simulation of energy efficiency in distributed computing infrastructures. Simul. Model. Pract. Theory 39, 135–151 (2013). ISSN 1569–190X, http://dx.doi.org/10.1016/j.simpat.2013.08.007
Hankendi, C., Reda, S., Coskun, A.K.: vCap: adaptive power capping for virtualized servers. In: 2013 IEEE International Symposium on Low Power Electronics and Design (ISLPED), pp. 415–420, 4–6 September 2013. doi:10.1109/ISLPED.2013.6629334
Chetsa, G.L.T., Lefevre, L., Pierson, J.-M., Stolf, P., Da Costa, G.: DNA-inspired scheme for building the energy profile of HPC systems. In: Huusko, J., de Meer, H., Klingert, S., Somov, A. (eds.) E\(^2\)DC 2012. LNCS, vol. 7396, pp. 141–152. Springer, Heidelberg (2012)
Lo, V., Mache, J., Windisch, K.: A comparative study of real workload traces and synthetic workload models for parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1998. LNCS, vol. 1459, pp. 25–46. Springer, Heidelberg (1998)
Rassmussen, N.: Determining Total Cost of ownership for data center and network room infrastructure. WP 6 APC. Schneider Electrics Data Center Science Center (2011)
Sisó, L., Forns, R.B., Napolitano, A., Salom, J., Da Costa, G., Volk, E., Donoghue, A.: D5.1 White paper on Energy- and Heat-aware metrics for computing modules - CoolEmAll Deliverable (2012). http://coolemall.eu
Sisó, L., Salom, J., Jarus, M., Oleksiak, A., Zilio, T.: Energy and heat-aware metrics for data centers: metrics analysis in the framework of CoolEmAll project. In: Third International Conference on Cloud and Green Computing (CGC), pp. 428–434 (2013)
Volk, E., Tenschert, A., Gienger, M., Oleksiak, A., Sisó, L., Salom, J.: Improving energy efficiency in data centers and federated cloud environments: comparison of CoolEmAll and Eco2Clouds approaches and metrics. In: Third International Conference on Cloud and Green Computing (CGC), pp. 443–450 (2013)
Liu, Z., Chen, Y., Bash, C., Wierman, A., Gmach, D., Wang, Z., Marwah, M., Hyser, C.: Renewable and cooling aware workload management for sustainable data centers. SIGMETRICS Perform. Eval. Rev. 40(1), 175–186 (2012)
Research: The economics of prefabricated modular datacenters (2012)
Feitelson, D.: Workload modeling for computer systems performance evaluation. http://www.cs.huji.ac.il/feit/wlmod/. Accessed 30 Dec 2012
European Central Bank. http://www.ecb.europa.eu/home/html/index.en.html
Eurostat. European Commission. http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=ten00114. Accessed 06 March 2014
ParallelWorkload Archive. http://www.cs.huji.ac.il/labs/parallel/workload/
Acknowledgements
The results presented in this paper are partially funded by the European Commission under contract 288701 through the project CoolEmAll and by a grant from Polish National Science Center under award number 2013/08/A/ST6/00296.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Da Costa, G., Oleksiak, A., Piatek, W., Salom, J., Sisó, L. (2015). Minimization of Costs and Energy Consumption in a Data Center by a Workload-Based Capacity Management. In: Klingert, S., Chinnici, M., Rey Porto, M. (eds) Energy Efficient Data Centers. E2DC 2014. Lecture Notes in Computer Science(), vol 8945. Springer, Cham. https://doi.org/10.1007/978-3-319-15786-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-15786-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15785-6
Online ISBN: 978-3-319-15786-3
eBook Packages: Computer ScienceComputer Science (R0)