GEYSER: Enabling Green Data Centres in Smart Cities

  • Ionut Anghel
  • Massimo Bertoncini
  • Tudor Cioara
  • Marco Cupelli
  • Vasiliki Georgiadou
  • Pooyan Jahangiri
  • Antonello Monti
  • Seán Murphy
  • Anthony Schoofs
  • Terpsi Velivassaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8945)

Abstract

Information Technology is a dominant player of our modern societies; Data Centres, lying at the heart of the IT landscape, have attracted attention, with their increasing energy consumption being a constant topic of concern, especially when it comes to the negative impact on the quality of their surrounding environment. Nevertheless, recent technological and societal advances are paving the way for DCs to change their role from passive energy consumers into prosumers, thus, transforming themselves into leading players within their smart district surroundings. This paper describes the innovative GEYSER approach to enabling green networked DCs to monitor, control, reuse, and optimize both their energy consumption and production, and in particular from renewable resources, towards becoming active participants within Smart Grids and Smart Cities.

Keywords

Green data centres Energy efficiency Energy prosumers Renewable energy sources Smart cities Smart grids 

References

  1. 1.
    Kumar, R.: How to measure Energy Consumption in Your Data Center, Gartner RAS Core Research Note G00205428, September 2010. http://www.gartner.com/resId=1433244
  2. 2.
    EU FP7 GAMES, Green Active Management of Energy in IT SErvice Center. http://www.green-datacenters.eu/
  3. 3.
    EU FP7 FIT4Green, Federated IT for a sustainable environment impact. http://www.fit4green.eu/
  4. 4.
    EU FP7 All4Green, Active collaboration in data centre ecosystem to reduce energy consumption and GHG emissions. http://www.all4green-project.eu/
  5. 5.
    EU FP7 CoolEmAll, Platform for optimising the design and operation of modular configurable IT infrastructures and facilities with resource-efficient cooling. http://www.coolemall.eu
  6. 6.
    Parolini, L., Sinopoli, B., Krogh, B.H.: Reducing data centre energy consumption via coordinated cooling and load management. In: HotPower 2008: Workshop on Power Aware Computing and Systems, December 2008Google Scholar
  7. 7.
    Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized cloud data centres. In: IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp. 826–831, May 2010Google Scholar
  8. 8.
    Aikema, D., Kiddle, C., Simmonds, R.: Energy-cost-aware scheduling of HPC workloads. In: 1st International Workshop on Sustainable Internet and Internet for Sustainability, June 2011Google Scholar
  9. 9.
    Miller, R.: Google embraces thermal storage in Taiwan, April 2012. http://www.datacentreknowledge.com/archives/2012/04/03/google-embraces-thermal-storage-in-taiwan/
  10. 10.
  11. 11.
    Yuce, B., Packianather, M.S., Mastrocinque, E., Pham, D.T., Lambiase, A.: Honey bees inspired optimization method: the bees algorithm. Insects 4, 646–662 (2013). http://dx.doi.org/10.3390/insects4040646 CrossRefGoogle Scholar
  12. 12.
    Babu, D., Krishna, P.V.: Honey bee behavior inspired load balancing of tasks in cloud computing environments. Appl. Soft Comput. 13(5), 2292–2303 (2013). http://dx.doi.org/10.1016/j.asoc.2013.01.025 CrossRefGoogle Scholar
  13. 13.
    EU FP7 Cooperate, Control and Optimization for Energy Positive Neighbourhoods. http://www.cooperate-fp7.eu/
  14. 14.
    Salomie, I., Cioara, T., Anghel, I., Moldovan, D., Copil, G., Plebani, P.: An energy aware context model for green it service centers. In: Maximilien, E., Rossi, G., Yuan, S.-T., Ludwig, H., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6568, pp. 169–180. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Modelica and the Modelica Association – Modelica Association. https://www.modelica.org/
  16. 16.
    Stoyanova, I., Matthes, P., Harb, H., Molitor, C., Marin, M., Streblow, R., Monti, A., Muller, D.: Challenges in modeling a multi-energy system at city quarter level Complexity in Engineering (COMPENG), pp. 1–5 (2012)Google Scholar
  17. 17.
    Molitor, C., et al.: Mutliphysics test bed for renewable energy systems in smart homes. IEEE Trans. Industr. Electron. 60(3), 1235–1248 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ionut Anghel
    • 1
  • Massimo Bertoncini
    • 2
  • Tudor Cioara
    • 1
  • Marco Cupelli
    • 3
  • Vasiliki Georgiadou
    • 4
  • Pooyan Jahangiri
    • 3
  • Antonello Monti
    • 3
  • Seán Murphy
    • 5
  • Anthony Schoofs
    • 6
  • Terpsi Velivassaki
    • 7
  1. 1.Universitatea Tehnica Cluj-NapocaCluj-NapocaRomania
  2. 2.Engineering - Ingegneria Informatica SpaRomeItaly
  3. 3.Rheinisch-Westfaelische Technische HochSchule AachenAachenGermany
  4. 4.Green IT AmsterdamAmsterdamThe Netherlands
  5. 5.Zurcher Hochschule Fur Angewandte WissenschaftenWinterthurSwitzerland
  6. 6.Wattics LtdDublinIreland
  7. 7.SingularLogicAthensGreece

Personalised recommendations