Skip to main content

The Structure and Function of Xylem in Seed-Free Vascular Plants: An Evolutionary Perspective

  • Chapter

Abstract

Water transport in seed-free vascular plants such as ferns and lycopods occurs through strands of primary xylem. In roots, rhizomes and fronds, the xylem and phloem are packaged in steles comprising either a single vascular bundle (protostele) or many such bundles (dictyosteles) that are variously arranged throughout the segment. Seed-free vascular plants, ferns in particular, are ecologically and morphologically diverse yet very little is known about the structure and function of their xylem. With few exceptions, the xylem of seed-free vascular plants consists of tracheids that are longer and wider than those of conifers, with abundant scalariform pitting present on conduit walls. Recent work indicates that the xylem of seed-free vascular plants may be at least as efficient as that of conifers and angiosperms due to large tracheids, tight conduit packing and permeable pit membranes. Hydraulic benefits may be amplified in some polyploids which exhibit significantly longer tracheids. However, the presence of adaptive xylem does not fully compensate for the absence of a cambial layer, secondary xylem and vessels. Indeed, developmental and in part vascular limits constrain the diversity of seed-free plant morphospace, especially as compared to angiosperms. The fossil record indicates that extinct lineages of seed-free vascular plants had more diverse xylem structures as well as secondary xylem. Few studies have addressed the resistance of seed-free vascular plants to drought-induced cavitation but given the recent evolution of fern epiphytes, ferns may be well adapted to episodic water deficit. Available data indicate that in ferns and lycophytes, narrow tracheids are less vulnerable to air entry than large ones; by extension, species with smaller conduits, such as epiphytes, may be less susceptible to cavitation. The functional significance of stelar arrangements of fern petioles is largely unexplored but mapping stelar patterns onto the fern phylogeny reveals that in the more derived eupolypod lineages, selection has favoured the evolution of simpler, less divided vascular networks.

Keywords

  • Water transport
  • Cavitation
  • Primary xylem
  • Tracheid
  • Fern
  • Lycophyte
  • Pteridophytes
  • Stele
  • Epiphytes
  • Polyploidy
  • Pit membrane

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-15783-2_1
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-15783-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7
Fig. 1.8
Fig. 1.9
Fig. 1.10
Fig. 1.11

References

  • Agashe SN (1968) Phloem studies in the pteridophytes, part I. Equisetum. Am Fern J 58:74–77

    Google Scholar 

  • Alder NN, Pockman WT, Sperry JS, Nuismer S (1997) Use of centrifugal force in the study of xylem cavitation. J Exp Bot 48:665–674

    CAS  Google Scholar 

  • Arakaki M, Christin P-A, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ (2011) Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc Natl Acad Sci U S A 108:8379–8384

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baack EJ, Stanton ML (2005) Ecological factors influencing tetraploid speciation in snow buttercups (Ranunculus adoneus): niche differentiation and tetraploid establishment. Evolution 59:1936–1944

    PubMed  Google Scholar 

  • Barghoorn ES (1964) Evolution of cambium in geologica time. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic, New York, pp 3–17

    Google Scholar 

  • Beck CB (1970) The appearance of gymnospermous structure. Biol Rev 45:379–400

    Google Scholar 

  • Beck CB (2010) An introduction to plant structure and development. Cambridge University Press, Cambridge, p 459

    Google Scholar 

  • Beck CB, Schmid R, Rothwell G (1982) Stelar morphology and the primary vascular system of seed plants. Bot Rev 48:691–815

    Google Scholar 

  • Boyce C, Cody G, Fogel M, Hazen R (2003) Chemical evidence for cell wall lignification and the evolution of tracheids in early Devonian plants. Int J Plant Sci 165:691–702.

    Google Scholar 

  • Bower FO (1923) The ferns (Filicales), vol 1, Analytical examination of the criteria of comparison. Cambridge University Press, Cambridge, p 359

    Google Scholar 

  • Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA (2010) The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant Physiol 154:1088–1095

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brodersen CR, Lee EF, Choat B, Jansen S, Phillips RJ, Shackel KA, McElrone AJ, Matthews MA (2011) Automated analysis of three-dimensional xylem networks using high-resolution-computed-tomography. New Phytol 191:1168–1179

    CAS  PubMed  Google Scholar 

  • Brodersen CR, Roark LC, Pittermann J (2012) The physiological implications of primary xylem organization in two ferns. Plant Cell Environ 35:1898–1911

    PubMed  Google Scholar 

  • Brodersen C, Jansen S, Choat B, Rico C, Pittermann J (2014) Cavitation resistance in seedless vascular plants: the structure and function of interconduit pit membranes. Plant Physiol 165:895–904

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brodribb TJ, Feild TS (2010) Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol Lett 13:175–183

    PubMed  Google Scholar 

  • Brodribb TJ, Holbrook NM (2004) Stomatal protection against hydraulic failure: a comparison of co-existing ferns and angiosperms. New Phytol 162:663–670

    Google Scholar 

  • Brodribb TJ, McAdam SAM (2011) Passive origins of stomatal control in vascular plants. Science 331:582–585

    CAS  PubMed  Google Scholar 

  • Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144:1890–1898

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buggs RJA, Pannell JR (2007) Ecological differentiation and diploid superiority across a moving ploidy contact zone. Evolution 61:125–140

    PubMed  Google Scholar 

  • Calkin HW, Gibson AC, Nobel PS (1985) Xylem water potentials and hydraulic conductances in eight species of ferns. Can J Bot 63:632–637

    Google Scholar 

  • Canestraro BK, Moran RC, Watkins JE (2014) Reproductive and physiological ecology of climbing and terrestrial Polybotrya (Dryopteridaceae) at the La Selva Biological Station, Costa Rica. Int J Plant Sci 175:432–441

    Google Scholar 

  • Carlquist S, Schneider EL (2007) Tracheary elements in ferns: new techniques, observations and concepts. Am Fern J 97:199–211

    Google Scholar 

  • Choat B, Pittermann J (2009) New insights into bordered pit structure and cavitation resistance in angiosperms and conifers. New Phytol 182:557–560

    PubMed  Google Scholar 

  • Choat B, Lahr EC, Melcher PJ, Zwieniecki MA, Holbrook NM (2005) The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant Cell Environ 28:1082–1089

    Google Scholar 

  • Christman MA, Sperry JS, Adler F (2009) Testing the “rare pit” hypothesis for xylem cavitation resistance in three species of Acer. New Phytol 182:664–674

    PubMed  Google Scholar 

  • Cichan MA (1985a) Vascular cambium and wood development in Carboniferous plants. I. Lepidodendrales. Am J Bot 72:1163–1176

    Google Scholar 

  • Cichan MA (1985b) Vascular cambium and wood development in Carboniferous plants. II. Sphenophyllum plurifoliatum Williamson and Scott (Sphenophyllales). Bot Gaz 146:395–403

    Google Scholar 

  • Cichan MA (1986) Conductance in the wood of selected Carboniferous plants. Paleobiology 12:302–310

    Google Scholar 

  • Coate JE, Schlueter JA, Whaley AM, Doyle JJ (2011) Comparative evolution of photosynthetic genes in response to polyploid and nonpolyploid duplication. Plant Physiol 155:2081–2095

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coomes DA, Allen RB, Bentley WA et al (2005). The hare, the tortoise and the crocodile: the ecology of angiosperm dominance, conifer persistence and fern filtering. J Ecol 93:918–935.

    Google Scholar 

  • Creese C, Lee A, Sack L (2011) Drivers of morphological diversity and distribution in the Hawaiian fern flora: trait associations with size, growth form, and environment. Am J Bot 98:1–11

    Google Scholar 

  • DeBodt S, Maere S, Van de Peer Y (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591–597

    Google Scholar 

  • Domec J-C, Lachenbruch B, Meinzer F, Woodruff D, Warren JM, McCulloh K (2008) Maximum height in a conifer is associated with conflicting requirements for xylem design. Proc Natl Acad Sci U S A 105:12069–12074

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dubuisson J-Y, Schneider H, Hennequin S (2009) Epiphytism in ferns: diversity and history. C R Biol 332:120–128

    PubMed  Google Scholar 

  • Edwards DS (1986) Aglaophyton major, a non-vascular land-plant from the Devonian Rhynie Chert. Bot J Linn Soc 93:173–204

    Google Scholar 

  • Edwards EJ, Osborne CP, Stromberg CAE, Smith SA, C4 Grasses Consortium (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–591

    CAS  PubMed  Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci U S A 106:5737–5742

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feild TS, Brodribb TJ, Iglesias A, Chatelet DS, Baresch A, Upchurch GR, Gomez G, Mohr BAR, Coiffard C, Kvacek J, Jaramillo C (2011) Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proc Natl Acad Sci U S A 108:8363–8366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fotedar RL, Shah JJ (1975) Phloem structure and development in Blechnum orientale. Am Fern J 65:52–60

    Google Scholar 

  • Gaupels F, Buhts A, Knauer T, Deshmukh S, Waller F, Van Bel AJE, Kogel K-H, Kehr J (2008) Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap. J Exp Bot 59:3297–3306

    PubMed Central  CAS  PubMed  Google Scholar 

  • George L, Bazzaz F (1999) The fern understory as an ecological filter: growth and survival of canopy-tree seedlings. Ecology 80:846–856

    Google Scholar 

  • Gerrienne P, Gensel PG, Strullu-Derrien C, Lardeux H, Steemans P, Prestianni C (2011) A simple type of wood in two early Devonian plants. Science 33:837

    Google Scholar 

  • Gullo MAL, Raimondo F, Crisafulli A, Salleo S, Nardini A (2010) Leaf hydraulic architecture and water relations of three ferns from contrasting light habitats. Funct Plant Biol 37:566–574

    Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Google Scholar 

  • Hacke U, Sperry J, Wheeler J, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Google Scholar 

  • Hacke UG, Sperry JS, Feild TS, Sano Y, Sikkema EH, Pittermann J (2007) Water transport in vesselless angiosperms: conducting efficiency and cavitation safety. Int J Plant Sci 168:1113–1126

    Google Scholar 

  • Hernandez-Hernandez V, Terrazas T, Mehltreter K, Angeles G (2012) Studies of petiolar anatomy in ferns: structural diversity and systematic significance of the circumendodermal band. Bot J Linn Soc 169:596–610

    Google Scholar 

  • Hietz P, Briones O (1998) Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia 114:305–316

    Google Scholar 

  • Jacobsen AL, Ewers FW, Pratt RB, Paddock WA, Davis SA (2005) Do xylem fibers affect vessel cavitation resistance? Plant Physiol 139:546–556

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jansen S, Choat B, Pletsers A (2009) Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot 96:409–419

    PubMed  Google Scholar 

  • Jensen KH, Liesche J, Bohr T, Schulz A (2012) Universality of phloem transport in seed plants. Plant, Cell Environ 35:1065–1076

    CAS  Google Scholar 

  • Kao RH, Parker IM (2010) Coexisting cytotypes of Arnica cordifolia: morphological differentiation and local-scale distribution. Int J Plant Sci 171:81–89

    Google Scholar 

  • Kenrick P, Crane PR (1991) Water-conducting cells in early fossil land plants: implications for the early evolution of tracheophytes. Bot Gaz 152:335–356

    Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    CAS  Google Scholar 

  • Kitin PB, Fujii T, Abe H, Funada R (2004) Anatomy of the vessel network within and between tree rings of Fraxinus lanuginosa (Oleaceae). Am J Bot 91:779–788

    PubMed  Google Scholar 

  • Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011) Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol 190:709–723

    PubMed  Google Scholar 

  • Levin DA (1975) Minority cytotype exclusion in local plant populations. Taxon 24:35–43

    Google Scholar 

  • Li WL, Berlyn GP, Ashton PMS (1996) Polyplolds and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceae). Am J Bot 83:15–20

    Google Scholar 

  • Li WD, Biswas DK, Xu H, Xu CQ, Wang XZ, Liu JK, Jiang GM (2009) Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Funct Plant Biol 36:783–792

    CAS  Google Scholar 

  • Limm EB, Dawson TE (2010) Polystichum munitum (Dryopteridaceae) varies geographically in its capacity to absorb fog water by foliar uptake within the redwood forest ecosystem. Am J Bot 97:1121–1128

    PubMed  Google Scholar 

  • Limm EB, Simonin KA, Bothman AG, Dawson TE (2009) Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161:449–459

    PubMed Central  PubMed  Google Scholar 

  • Liu H-M, He L-J, Schneider H (2014). Towards the natural classification of tectarioid ferns: confirming the phylogenetic relationships of Pleocnemia and Pteridrys (eupolypods I). J Syst Evol 52:161–174

    Google Scholar 

  • Manton I (1950) Problems of cytology and evolution in the Pteridophyta. Cambridge University Press, Cambridge

    Google Scholar 

  • Marrs RH, Watt AS (2006) Biological flora of the British Isles: Pteridium aquilinum (L.) Kuhn. J Ecol 94:1272–1321

    Google Scholar 

  • Mauseth JD, Fujii T (1994) Resin-casting: a method for investigating apoplastic spaces. Am J Bot 81:104–110

    Google Scholar 

  • McCulloh K, Sperry JS, Lachenbruch B, Meinzer FC, Reich PB, Voelker S (2010) Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. New Phytol 186:439–450

    PubMed  Google Scholar 

  • Mehltreter K, Walker LR, Sharpe JM (2010) Fern Ecology. Cambridge University Press, New York

    Google Scholar 

  • Meyer-Berthaud B, Scheckler SE, Wendt J (1999) Archaeopteris is the earliest known modern tree. Nature 398:700–701

    CAS  Google Scholar 

  • Meyer-Berthaud B, Scheckler SE, Bousquet J-L (2000) The development of Archaeopteris: new evolutionary characters from the structural analysis of an Early Famennian trunk from southeast Morocco. Am J Bot 87:456–468

    CAS  PubMed  Google Scholar 

  • Moran RC (2008) Diversity, biogeography, and floristics. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, pp 367–394

    Google Scholar 

  • Morrow AC, Dute RR (1998) Development and structure of pit membranes in the rhizome of the woody fern Botrichium dissectum. IAWA J 19:429–441

    Google Scholar 

  • Mullendore DL, Windt CW, Van As H, Knoblauch M (2010) Sieve tube geometry in relation to phloem flow. Plant Cell 22:579–593

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nikinmaa E, Sievanen R, Holtta T (2014) Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown. Ann Bot 114(44):653–666. doi:10.1093/aob/mcu068

    CAS  PubMed  Google Scholar 

  • Niklas KJ (1985) The evolution of tracheid diameter in early vascular plans and its implications on the hydraulic conductance of the primary xylem strand. Evolution 39:1110–1122

    Google Scholar 

  • Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, Chicago, p 410

    Google Scholar 

  • Niklas KJ (1999). Evolutionary walks through a land plant morphospace. J Exp Bot 50:39–52.

    CAS  Google Scholar 

  • Niklas KJ (2000) The evolution of plant body plans—a biomechanical perspective. Ann Bot 85:411–438

    Google Scholar 

  • Niklas K, Smocovitis V (1983) Evidence for a conducting strand in the early Silurian (Llandoverian) plants: implications for the evolution of the land plants. Paleobiology 9:126–137

    Google Scholar 

  • Niklas KJ, Speck T (2001) Evolutionary trends in safety factors against wind-induced stem failure. Am J Bot 88:1266–1278

    CAS  PubMed  Google Scholar 

  • Ogura Y (1972) Comparative anatomy of vegetative organs of the pteridophytes. Gebruder Borntraeger, Berlin, p 502

    Google Scholar 

  • Page CN (2002) Ecological strategies in fern evolution: a neopteridological overview. Rev Palaeobot Palynol 119:1–33

    Google Scholar 

  • Panshin AJ, de Zeeuw C (1980) Textbook of wood technology. McGraw-Hill, New York

    Google Scholar 

  • Pickard WF, Abraham-Shrauner B (2009) A “simplest” steady-state Munch-like model of phloem translocation, with source and pathway and sink. Funct Plant Biol 36:629–644

    Google Scholar 

  • Pittermann J (2010) The evolution of water transport in plants: an integrated approach. Geobiology 8:112–139

    CAS  PubMed  Google Scholar 

  • Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH (2005) The torus-margo pit valve makes conifers hydraulically competitive with angiosperms. Science 310:1924

    CAS  PubMed  Google Scholar 

  • Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH (2006) Mechanical reinforcement against tracheid implosion compromises the hydraulic efficiency of conifer xylem. Plant Cell Environ 29:1618–1628

    PubMed  Google Scholar 

  • Pittermann J, Choat B, Jansen S, Stuart SA, Lynn L, Dawson T (2010) The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function. Plant Physiol 153:1919–1931

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pittermann J, Limm E, Rico C, Christman M (2011) Structure function constraints of tracheid-based xylem: a comparison of conifers and ferns. New Phytol 192:449–461

    CAS  PubMed  Google Scholar 

  • Pittermann J, Stuart SA, Dawson TE, Moreau A (2012) Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proc Natl Acad Sci U S A 109:9647–9652

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pittermann J, Brodersen C, Watkins JE (2013) The physiological resilience of fern sporophytes and gametophytes: advances in water relations offer new insights into an old lineage. Front Plant Sci. doi:10.3389/fpls.2013.00285

    PubMed Central  PubMed  Google Scholar 

  • Pockman WT, Sperry JS (1997) Freezing-induced xylem cavitation and the northern limit of Larrea tridentata. Oecologia 109:19–27

    Google Scholar 

  • Proctor MCF (2012) Light and desiccation responses of some Hymenophyllaceae (filmy ferns) from Trinidad, Venezuela and New Zealand: poikilohydry in a light-limited but low evaporation ecological niche. Ann Bot 109:1019–1026

    PubMed Central  CAS  PubMed  Google Scholar 

  • Proctor MCF, Tuba Z (2002) Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytol 156:327–349

    Google Scholar 

  • Ranker TA, Haufler CH (2008) Biology and evolution of ferns and lycophytes. Cambridge University Press, New York

    Google Scholar 

  • Raven JA (1984) Physiological correlates of the morphology of early vascular plants. Bot J the Linn Soc 88:105–126

    Google Scholar 

  • Robinson RC, Sheffield E, Sharpe JM (2010) Problem ferns: their impact and management. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambridge University Press, Cambridge, pp 255–322

    Google Scholar 

  • Rothfels CJ, Sundue MA, Kuo L-Y, Larsson A, Kato M, Schuettpelz E, Pryer KM (2012) A revised family-level classification for eupolypod II ferns (Polypodiidae: Polypodiales). Taxon 61:515–533

    Google Scholar 

  • Rothwell GW, Karrfalt EE (2008) Growth, development and systematics of ferns: does Botrychium S.L. (Ophioglossales) really produce secondary xylem? Am J Bot 95:414–423

    PubMed  Google Scholar 

  • Rothwell GW, Stockey RA (2008) Phylogeny and evolution of ferns: a paleontological perspective. In: Ranker T, Hausler C (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge

    Google Scholar 

  • Rowe N, Speck T (2005) Plant evolutionary forms; an ecological and evolutionary perspective. New Phytol 166:61–72

    PubMed  Google Scholar 

  • Rowe N, Isnard S, Speck T (2004) Diversity of mechanical architectures in climbing plants: an evolutionary perspective. J Plant Growth Regul 23:108–128

    CAS  Google Scholar 

  • Salleo S, Lo Gullo MA, Trifilo P, Nardini A (2004) New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. Plant Cell Environ 27:1065–1076

    Google Scholar 

  • Schneider H, Pryer KM, Cranfill R, Smith AR, Wolf PG (2002) Evolution of vascular plant body plans: a phylogenetic perspective. In: Cronk QCB, Bateman RM, Hawkins JA (eds) Developmental genetics and plant evolution. Taylor & Francis, London, pp 330–364

    Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallon S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428:553–557

    CAS  PubMed  Google Scholar 

  • Schuettpelz E, Pryer KM (2009) Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proc Natl Acad Sci U S A 106:11200–11205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schulte PJ, Gibson AC, Nobel P (1987) Xylem anatomy and hydraulic conductance of Psilotum nudum. Am J Bot 74:1438–1445

    Google Scholar 

  • Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011) Decline in leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiol 156:832–843

    PubMed Central  CAS  PubMed  Google Scholar 

  • Secchi F, Zwieniecki MA (2011) Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant Cell Environ 34:514–524

    CAS  PubMed  Google Scholar 

  • Sessa EB, Zimmer EA, Givnish TJ (2012) Phylogeny, divergence times, and historical biogeography of new world Dryopteris (Dryopteridaceae). Am J Bot 88:730–750

    Google Scholar 

  • Sessa EB, Givnish TJ (2014) Leaf form and photosynthetic physiology of Dryopteris species distributed along light gradients in eastern North America. Funct Eco 28:108–123

    Google Scholar 

  • Serbet R, Rothwell GW (1999) Osmunda cinnamomea (Osmundaceae) in the Upper Cretaceous of western North America: additional evidence for exceptional species longevity among filicalean ferns. Int J Plant Sci 160:425–433

    Google Scholar 

  • Sharpe JM, Mehltreter K (2010) Ecological insights from fern population dynamics. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambridge University Press, New York, pp 61–139

    Google Scholar 

  • Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731

    Google Scholar 

  • Sperry JS (2003) Evolution of water transport and xylem structure. Int J Plant Sci 164:S115–S127

    Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    PubMed  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, Reading

    Google Scholar 

  • Strullu-Derrien C, Kenrick P Tafforeau P, Cochard H, Bonnemain J-L, Le Herisse A, Lardeux H, Badel E (2014) The earliest wood and its hydrualic properties document in c. 407-million-year-old fossils using synchrotron microtomography. Bot J Linn Soc 175:423–437

    Google Scholar 

  • Taylor TN, Taylor EL, Krings M (2009) Paleobotany. The biology and evolution of fossil plants. Academic, Oxford

    Google Scholar 

  • Testo WL, Watkins JE, Barrington DS (2014) Dynamics of asymmetrical hybridization in North American wood ferns: reconciling patterns of inheritance with gametophyte ecology. New Phytol. doi:10.1111/nph.13213

    PubMed  Google Scholar 

  • Testo WL, Watkins JE, Pittermann J, Momin R (2015) Pteris X caridadiae (Pteridaceae), a new hybrid fern from Costa Rica. Brittonia doi:10.1007/s12228-015-9370-8

  • Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to cavitation? IAWA J 15:335–360

    Google Scholar 

  • Vasco A, Moran RC, Ambrose BA (2013) The evolution, morphology, and development of fern leaves. Front Plant Sci 4:345. doi:10.3389/fpls.2013.00345

    PubMed Central  PubMed  Google Scholar 

  • Veres JS (1990) Xylem anatomy and hydraulic conductance of Costa Rican Blechnum ferns. Am J Bot 77:1610–1625

    Google Scholar 

  • Warner DA, Edwards GE (1993) Effects of polyploidy on photosynthesis. Photosynth Res 35:135–147

    CAS  PubMed  Google Scholar 

  • Watkins JE, Cardelús CL (2009) Habitat differentiation of ferns in a lowland tropical rain forest. Am Fern J 3:162–175

    Google Scholar 

  • Watkins JE, Cardelus CL (2012) Ferns in an Angiosperm world: Cretaceous radiation into the epiphytic niche and diversification on the forest floor. Int J Plant Sci 173:695–710

    Google Scholar 

  • Watkins JE, Mack MC, Sinclair T, Mulkey SS (2007a) Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytol 176:708–717

    PubMed  Google Scholar 

  • Watkins JE, Mack MC, Mulkey SS (2007b) Gametophyte ecology and demography of epiphytic and terrestrial tropical ferns. Am J Bot 94:701–708

    PubMed  Google Scholar 

  • Watkins JE, Rundel P, Cardelus CL (2007c) The influence of life form on carbon and nitrogen relationships in tropical rainforest ferns. Oecologia 153:225–232

    PubMed  Google Scholar 

  • Watkins JE, Holbrook NM, Zwieniecki MA (2010) Hydraulic properties of fern sporophytes: consequences for ecological and evolutionary diversification. Am J Bot 97:2007–2019

    PubMed  Google Scholar 

  • Wheeler JW, Sperry JS, Hacke UG, Hoang N (2005) Intervessel pitting and cavitation in woody Rosaceae and other vesseled plants: a basis for a safety vs. efficiency trade-off in xylem transport. Plant Cell Environ 28:800–812

    Google Scholar 

  • White RA, Weidlich WH (1995) Organization of the vascular system in the stems of Diplazium and Blechnum (Filicales). Am J Bot 82:982–991

    Google Scholar 

  • Wilson JP (2013) Modeling 400 million year of plant hydraulics. Paleontol Soc Pap 19:1–20

    Google Scholar 

  • Wilson JP, Fischer WW (2010) Hydraulics of Asteroxylon mackei, an early Devonian vascular plant, and the early evolution of water transport tissue in terrestrial plants. Geobiology 9:121–130

    Google Scholar 

  • Wilson JP, Knoll AH (2010) A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants. Paleobiology 36:335–355

    Google Scholar 

  • Wilson JP, Knoll AH, Holbrook NM, Marshall CR (2008) Modeling fluid flow in Medullosa, an anatomically unusual Carboniferous seed plant. Paleobiology 34:472–493

    Google Scholar 

  • Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci U S A 106:13875–13879

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmermann M, Tomlinson PB (1974) Vascular patterns in palm stems: variations of the Raphis principle. J Arnold Arb 55:402–424

    Google Scholar 

  • Zimmermann M, Tyree MT (2002) Xylem structure and the ascent of sap. Springer, Berlin

    Google Scholar 

  • Zwieniecki MA, Melcher PJ, Holbrook NM (2001) Hydraulic properties of individual xylem vessels of Fraxinus americana. J Exp Bot 52:257–264

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Uwe Hacke for the opportunity to contribute to this volume and for his comments on the manuscript. Dr. Robbin Moran’s assistance with preparation of Fig. 1.11 is much appreciated. The National Science Foundation is gratefully acknowledged for support of this work (JP, IOS-1258186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarmila Pittermann Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pittermann, J. et al. (2015). The Structure and Function of Xylem in Seed-Free Vascular Plants: An Evolutionary Perspective. In: Hacke, U. (eds) Functional and Ecological Xylem Anatomy. Springer, Cham. https://doi.org/10.1007/978-3-319-15783-2_1

Download citation