Advertisement

Functional Diversity of Human Dendritic Cells

  • Eynav Klechevsky
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 850)

Abstract

At the crossroad between innate and adaptive immunity are the dendritic Cells (DCs), a “novel cell type.” discovered in 1973 by Ralph Steinman. Although not entirely appreciated at first, it is clear that they play a critical role as specialized antigen-presenting cells and essential mediators in shaping immune reactivity and tolerance. Dendritic cells are now recognized as a heterogeneous group of cells in terms of cell-surface markers, anatomic location, and function adapted to protect against an array of pathogens and conditions. Importantly, these subsets are also unique to each species. While significant progress has been made on the identification and function of mouse DC subsets, much less is known about human cells. Here we review the fascinating biology of human skin DCs and describe tolerogenic principles that are critical in maintaining immune homeostasis and for controlling inflammation, as well as mechanisms that are fundamental to confer immunity. We surmise that these principles could be applied to DCs across organs, and could be harnessed for the treatment of various human autoimmune, inflammatory diseases, as well as cancer. Importantly, to leverage the relevance of basic research to the clinical setting, it is first necessary to determine the functional homology between mouse and human DCs. We discuss practical steps towards this aim.

Keywords

Dendritic cells (DCs) Langerhans cells (LCs) Cytokines Dermal DCs CD8+ T cells Mouse DCs Human DCs 

References

  1. Artyomov, M. N., et al. (2015). Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells. The Journal of Experimental Medicine, 212(5), 743–757.Google Scholar
  2. Babbitt, B. P., Allen, P. M., Matsueda, G., Haber, E., & Unanue, E. R. (1985). Binding of immunogenic peptides to Ia histocompatibility molecules. Nature, 317, 359–361.CrossRefPubMedGoogle Scholar
  3. Bachem, A., Guttler, S., Hartung, E., Ebstein, F., Schaefer, M., Tannert, A., Salama, A., Movassaghi, K., Opitz, C., Mages, H. W., Henn, V., Kloetzel, P. M., Gurka, S., & Kroczek, R. A. (2010). Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. The Journal of Experimental Medicine, 207, 1273–1281.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392, 245–252.CrossRefPubMedGoogle Scholar
  5. Banchereau, J., Klechevsky, E., Schmitt, N., Morita, R., Palucka, K., & Ueno, H. (2009). Harnessing human dendritic cell subsets to design novel vaccines. Annals of the New York Academy of Sciences, 1174, 24–32.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Banchereau, J., Thompson-Snipes, L., Zurawski, S., Blanck, J. P., Cao, Y., Clayton, S., Gorvel, J. P., Zurawski, G., & Klechevsky, E. (2012a). The differential production of cytokines by human Langerhans cells and dermal CD14(+) DCs controls CTL priming. Blood, 119, 5742–5749.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Banchereau, J., Zurawski, S., Thompson-Snipes, L., Blanck, J. P., Clayton, S., Munk, A., Cao, Y., Wang, Z., Khandelwal, S., Hu, J., McCoy, W. H. t., Palucka, K. A., Reiter, Y., Fremont, D. H., Zurawski, G., Colonna, M., Shaw, A. S., & Klechevsky, E. (2012b). Immunoglobulin-like transcript receptors on human dermal CD14+ dendritic cells act as a CD8-antagonist to control cytotoxic T cell priming. Proceedings of the National Academy of Sciences of the United States of America, 109, 18885–18890.Google Scholar
  8. Caux, C., Vanbervliet, B., Massacrier, C., Dezutter-Dambuyant, C., de Saint-Vis, B., Jacquet, C., Yoneda, K., Imamura, S., Schmitt, D., & Banchereau, J. (1996). CD34 + hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. The Journal of Experimental Medicine, 184, 695–706.CrossRefPubMedGoogle Scholar
  9. Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., Durand, I., Cella, M., Lanzavecchia, A., & Banchereau, J. (1997). CD34 + hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis. Blood, 90, 1458–1470.PubMedGoogle Scholar
  10. Chu, C. C., Ali, N., Karagiannis, P., Di Meglio, P., Skowera, A., Napolitano, L., Barinaga, G., Grys, K., Sharif-Paghaleh, E., Karagiannis, S. N., Peakman, M., Lombardi, G., & Nestle, F. O. (2012). Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. The Journal of Experimental Medicine, 209, 935–945.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Cohn, L., Chatterjee, B., Esselborn, F., Smed-Sorensen, A., Nakamura, N., Chalouni, C., Lee, B. C., Vandlen, R., Keler, T., Lauer, P., Brockstedt, D., Mellman, I., & Delamarre, L. (2013). Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation. The Journal of Experimental Medicine, 210, 1049–1063.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Crozat, K., Guiton, R., Guilliams, M., Henri, S., Baranek, T., Schwartz-Cornil, I., Malissen, B., & Dalod, M. (2010). Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunological Reviews, 234, 177–198.CrossRefPubMedGoogle Scholar
  13. de Jong, A., Pena-Cruz, V., Cheng, T. Y., Clark, R. A., Van Rhijn, I., & Moody, D. B. (2010). CD1a-autoreactive T cells are a normal component of the human alphabeta T cell repertoire. Nature Immunology, 11, 1102–1109.PubMedCentralCrossRefPubMedGoogle Scholar
  14. del Rio, M. L., Bernhardt, G., Rodriguez-Barbosa, J. I., & Forster, R. (2010). Development and functional specialization of CD103+ dendritic cells. Immunological Reviews, 234, 268–281.CrossRefPubMedGoogle Scholar
  15. Dresch, C., Ackermann, M., Vogt, B., de Andrade Pereira, B., Shortman, K., & Fraefel, C. (2011). Thymic but not splenic CD8(+) DCs can efficiently cross-prime T cells in the absence of licensing factors. European Journal of Immunology, 41, 2544–2555.CrossRefPubMedGoogle Scholar
  16. Dudziak, D., Kamphorst, A. O., Heidkamp, G. F., Buchholz, V. R., Trumpfheller, C., Yamazaki, S., Cheong, C., Liu, K., Lee, H. W., Park, C. G., Steinman, R. M., & Nussenzweig, M. C. (2007). Differential antigen processing by dendritic cell subsets in vivo. Science, 315, 107–111.CrossRefPubMedGoogle Scholar
  17. Dullaers, M., Li, D., Xue, Y., Ni, L., Gayet, I., Morita, R., Ueno, H., Palucka, K. A., Banchereau, J., & Oh, S. (2009). A T cell-dependent mechanism for the induction of human mucosal homing immunoglobulin A-secreting plasmablasts. Immunity, 30, 120–129.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Flacher, V., Bouschbacher, M., Verronese, E., Massacrier, C., Sisirak, V., Berthier-Vergnes, O., de Saint-Vis, B., Caux, C., Dezutter-Dambuyant, C., Lebecque, S., & Valladeau, J. (2006). Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. The Journal of Immunology, 177, 7959–7967.CrossRefPubMedGoogle Scholar
  19. Fujita, H., Nograles, K. E., Kikuchi, T., Gonzalez, J., Carucci, J. A., & Krueger, J. G. (2009). Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production. Proceedings of the National Academy of Sciences of the United States of America, 106, 21795–21800.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Gao, Y., Nish, S. A., Jiang, R., Hou, L., Licona-Limon, P., Weinstein, J. S., Zhao, H., & Medzhitov, R. (2013). Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity, 39, 722–732.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Ginhoux, F., Tacke, F., Angeli, V., Bogunovic, M., Loubeau, M., Dai, X. M., Stanley, E. R., Randolph, G. J., & Merad, M. (2006). Langerhans cells arise from monocytes in vivo. Nature Immunology, 7, 265–273.CrossRefPubMedGoogle Scholar
  22. Ginhoux, F., Collin, M. P., Bogunovic, M., Abel, M., Leboeuf, M., Helft, J., Ochando, J., Kissenpfennig, A., Malissen, B., Grisotto, M., Snoeck, H., Randolph, G., & Merad, M. (2007). Blood-derived dermal langerin + dendritic cells survey the skin in the steady state. The Journal of Experimental Medicine, 204, 3133–3146.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Haniffa, M., Shin, A., Bigley, V., McGovern, N., Teo, P., See, P., Wasan, P. S., Wang, X. N., Malinarich, F., Malleret, B., Larbi, A., Tan, P., Zhao, H., Poidinger, M., Pagan, S., Cookson, S., Dickinson, R., Dimmick, I., Jarrett, R. F., Renia, L., Tam, J., Song, C., Connolly, J., Chan, J. K., Gehring, A., Bertoletti, A., Collin, M., & Ginhoux, F. (2012). Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity, 37, 60–73.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Hildner, K., Edelson, B. T., Purtha, W. E., Diamond, M., Matsushita, H., Kohyama, M., Calderon, B., Schraml, B. U., Unanue, E. R., Diamond, M. S., Schreiber, R. D., Murphy, T. L., & Murphy, K. M. (2008). Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science, 322, 1097–1100.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Hochheiser, K., Heuser, C., Krause, T. A., Teteris, S., Ilias, A., Weisheit, C., Hoss, F., Tittel, A. P., Knolle, P. A., Panzer, U., Engel, D. R., Tharaux, P. L., & Kurts, C. (2013). Exclusive CX3CR1 dependence of kidney DCs impacts glomerulonephritis progression. Journal of Clinical Investigation, 123, 4242–4254.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Igyarto, B. Z., Jenison, M. C., Dudda, J. C., Roers, A., Muller, W., Koni, P. A., Campbell, D. J., Shlomchik, M. J., & Kaplan, D. H. (2009). Langerhans cells suppress contact hypersensitivity responses via cognate CD4 interaction and langerhans cell-derived IL-10. Journal of Immunology, 183, 5085–5093.CrossRefGoogle Scholar
  27. Jongbloed, S. L., Kassianos, A. J., McDonald, K. J., Clark, G. J., Ju, X., Angel, C. E., Chen, C. J., Dunbar, P. R., Wadley, R. B., Jeet, V., Vulink, A. J., Hart, D. N., & Radford, K. J. (2010). Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. The Journal of Experimental Medicine, 207, 1247–1260.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Klechevsky, E., & Banchereau, J. (2013). Human dendritic cells subsets as targets and vectors for therapy. Annals of the New York Academy of Sciences, 1284, 24–30.CrossRefPubMedGoogle Scholar
  29. Klechevsky, E., Morita, R., Liu, M., Cao, Y., Coquery, S., Thompson-Snipes, L., Briere, F., Chaussabel, D., Zurawski, G., Palucka, A. K., Reiter, Y., Banchereau, J., & Ueno, H. (2008). Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity, 29, 497–510.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Klechevsky, E., Liu, M., Morita, R., Banchereau, R., Thompson-Snipes, L., Palucka, A. K., Ueno, H., & Banchereau, J. (2009). Understanding human myeloid dendritic cell subsets for the rational design of novel vaccines. Human Immunology, 70, 281–288.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Kumamoto, Y., Linehan, M., Weinstein, J. S., Laidlaw, B. J., Craft, J. E., & Iwasaki, A. (2013). CD301b(+) Dermal Dendritic Cells Drive T Helper 2 Cell-Mediated Immunity. Immunity, 39, 733–743.CrossRefPubMedGoogle Scholar
  32. Langerhans, P. (1868). Uber die nerven der menschlichen haut. Archives of Pathological Anatomy, 44, 325–337.CrossRefGoogle Scholar
  33. Lenz, A., Heine, M., Schuler, G., & Romani, N. (1993). Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. Journal of Clinical Investigation, 92, 2587–2596.PubMedCentralCrossRefPubMedGoogle Scholar
  34. Mathers, A. R., Janelsins, B. M., Rubin, J. P., Tkacheva, O. A., Shufesky, W. J., Watkins, S. C., Morelli, A. E., & Larregina, A. T. (2009). Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses. Journal of Immunology, 182, 921–933.CrossRefGoogle Scholar
  35. Meredith, M. M., Liu, K., Darrasse-Jeze, G., Kamphorst, A. O., Schreiber, H. A., Guermonprez, P., Idoyaga, J., Cheong, C., Yao, K. H., Niec, R. E., & Nussenzweig, M.C. (2012). Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. The Journal of Experimental Medicine, 209, 1153–1165.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Morelli, A. E., Rubin, J. P., Erdos, G., Tkacheva, O. A., Mathers, A. R., Zahorchak, A. F., Thomson, A. W., Falo, L. D. Jr., & Larregina, A. T. (2005). CD4+ T cell responses elicited by different subsets of human skin migratory dendritic cells. Journal of Immunology, 175, 7905–7915.CrossRefGoogle Scholar
  37. Nagao, K., Ginhoux, F., Leitner, W. W., Motegi, S., Bennett, C. L., Clausen, B. E., Merad, M., & Udey, M. C. (2009). Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proceedings of the National Academy of Sciences of the United States of America, 106, 3312–3317.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Nestle, F. O., Zheng, X. G., Thompson, C. B., Turka, L. A., & Nickoloff, B. J. (1993). Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. Journal of Immunology, 151, 6535–6545.Google Scholar
  39. Nestle, F. O., Filgueira, L., Nickoloff, B. J., & Burg, G. (1998). Human dermal dendritic cells process and present soluble protein antigens. The Journal of investigative dermatology, 110, 762–766.CrossRefPubMedGoogle Scholar
  40. Penel-Sotirakis, K., Simonazzi, E., Peguet-Navarro, J., & Rozieres, A. (2012). Differential capacity of human skin dendritic cells to polarize CD4+ T cells into IL-17, IL-21 and IL-22 producing cells. PLos One, 7, e45680.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Poulin, L. F., Salio, M., Griessinger, E., Anjos-Afonso, F., Craciun, L., Chen, J. L., Keller, A. M., Joffre, O., Zelenay, S., Nye, E., Le Moine, A., Faure, F., Donckier, V., Sancho, D., Cerundolo, V., Bonnet, D., & Reis e Sousa, C. (2010). Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. The Journal of Experimental Medicine, 207, 1261–1271.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Robbins, S. H., Walzer, T., Dembele, D., Thibault, C., Defays, A., Bessou, G., Xu, H., Vivier, E., Sellars, M., Pierre, P., Sharp, F. R., Chan, S., Kastner, P., & Dalod, M. (2008). Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biology, 9, R17.PubMedCentralCrossRefPubMedGoogle Scholar
  43. Romani, N., Clausen, B. E., & Stoitzner, P. (2010). Langerhans cells and more: Langerin-expressing dendritic cell subsets in the skin. Immunological Reviews, 234, 120–141.PubMedCentralCrossRefPubMedGoogle Scholar
  44. Satpathy, A. T., Kc, W., Albring, J. C., Edelson, B. T., Kretzer, N. M., Bhattacharya, D., Murphy, T. L., & Murphy, K. M. (2012). Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. The Journal of Experimental Medicine, 209, 1135–1152.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Schmitt, N., Morita, R., Bourdery, L., Bentebibel, S. E., Zurawski, S. M., Banchereau, J., & Ueno, H. (2009). Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity, 31, 158–169.PubMedCentralCrossRefPubMedGoogle Scholar
  46. Schmitt, N., Bustamante, J., Bourdery, L., Bentebibel, S. E., Boisson-Dupuis, S., Hamlin, F., Tran, M. V., Blankenship, D., Pascual, V., Savino, D. A., Banchereau, J., Casanova, J. L., & Ueno, H. (2013). IL-12 receptor beta1 deficiency alters in vivo T follicular helper cell response in humans. Blood, 121, 3375–3385.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Schuler, G., & Steinman, R. M. (1985). Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. The Journal of Experimental Medicine, 161, 526–546.CrossRefPubMedGoogle Scholar
  48. Segura, E., & Villadangos, J. A. (2009). Antigen presentation by dendritic cells in vivo. Current Opinion in Immunology, 21, 105–110.CrossRefPubMedGoogle Scholar
  49. Sere, K., Baek, J. H., Ober-Blobaum, J., Muller-Newen, G., Tacke, F., Yokota, Y., Zenke, M., & Hieronymus, T. (2012). Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity, 37, 905–916.CrossRefPubMedGoogle Scholar
  50. Steinman, R. M., & Cohn, Z. A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. The Journal of Experimental Medicine, 137, 1142–1162.PubMedCentralCrossRefPubMedGoogle Scholar
  51. Wang, Y., Szretter, K. J., Vermi, W., Gilfillan, S., Rossini, C., Cella, M., Barrow, A. D., Diamond, M. S., & Colonna, M. (2012). IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nature Immunology, 13, 753–760.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Zaba, L. C., Fuentes-Duculan, J., Steinman, R. M., Krueger, J. G., & Lowes, M. A. (2007). Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163 + FXIIIA + macrophages. Journal of Clinical Investigation, 117, 2517–2525.PubMedCentralCrossRefPubMedGoogle Scholar
  53. Ziegler, K., & Unanue, E. R. (1981). Identification of a macrophage antigen-processing event required for I-region-restricted antigen presentation to T lymphocytes. Journal of Immunology, 127, 1869–1875.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Washington University School of MedicineSt. LouisUSA

Personalised recommendations