Skip to main content

Analysis of Non-linear Vibrations of a Fractionally Damped Cylindrical Shell Under the Conditions of Combinational Internal Resonance

  • Chapter
Computational Problems in Science and Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 343))

Abstract

Non-linear damped vibrations of a cylindrical shell subjected to the different conditions of the combinational internal resonance are investigated. Its viscous properties are described by Riemann-Liouville fractional derivative. The displacement functions are determined in terms of eigenfunctions of linear vibrations. The procedure resulting in decoupling linear parts of equations is proposed with the further utilization of the method of multiple time scales for solving nonlinear governing equations of motion, in so doing the amplitude functions are expanded into power series in terms of the small parameter and depend on different time scales. It is shown that the phenomenon of internal resonance can be very critical, since in a circular cylindrical shell the internal additive and difference combinational resonances are always present. The influence of viscosity on the energy exchange mechanism is analyzed. It is shown that each mode is characterized by its damping coefficient connected with the natural frequency by the exponential relationship with a negative fractional exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Witt, A.A., Gorelik, G.A.: Vibrations of an elastic pendulum as an example of vibrations of two parametrically coupled linear systems (in Russian). J. Tech. Phys. 2–3, 294–307 (1933)

    Google Scholar 

  2. Nayfeh, A.H., Balachandran, S.: Modal interactions in dynamical and structural systems. Appl. Mech. Rev. 42, S175–S201 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nayfeh, A.H.: Nonlinear Interaction: Analytical, Computational, and Experimental Methods. Wiley, New York (2000)

    Google Scholar 

  4. Popov, A.A., Thompson, J.M.T., McRobie, F.A.: Low dimensional models of shell vibrations. Parametrically excited vibrations of cylindrical shells. J. Sound Vib. 209, 163–186 (1998)

    Article  Google Scholar 

  5. Amabili, M., Pellicano, F., Vakakis, A.F.: Nonlinear vibrations and multiple resonances of fluid-filled circular shells. Part 1: Equations of motion and numerical results. ASME J. Vib. Acoust. 122, 346–354 (2000)

    Google Scholar 

  6. Nayfeh, A.H., Raouf, R.A.: Non-linear oscillation of circular cylindrical shells. Int. J. Solids Struct. 23, 1625–1638 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. McRobie, F.A., Popov, A.A., Thompson, J.M.T.: Auto-parametric resonance in cylindrical shells using geometric averaging. J. Sound Vib. 227, 65–84 (1999)

    Article  Google Scholar 

  8. Avramov, K.V.: Nonlinear forced vibrations of a cylindrical shell with two internal resonances. Int. Appl. Mech. 42(2), 169–175 (2006)

    Article  Google Scholar 

  9. Popov, A.A.: Auto-parametric resonance in thin cylindrical shells using the slow fluctuation method. Thin-Walled Struct. 42, 475–495 (2004)

    Article  Google Scholar 

  10. Kubenko, V.D., Koval’chuk, P.S.: Nonlinear problems of the vibration of thin shell (review). Int. Appl. Mech. 34(8), 703–728 (1998)

    Article  MathSciNet  Google Scholar 

  11. Amabili, M., Pa\(\ddot{\imath }\) doussis, M.P.: Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction. ASME Appl. Mech. Rev. 56, 349–381 (2003)

    Google Scholar 

  12. Lee, Y.-S.: Review on the cylindrical shell research (in Korean). Trans. KSME 33, 1–26 (2009)

    Google Scholar 

  13. Breslavsky, I.D., Avramov, K.V.: Nonlinear modes of cylindrical panels with complex boundaries. R-function method. Meccanica 46, 817–832 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Avramov, K.V., Mikhin, Yu.V., Kurilov, E.: Asymptotic analysis of nonlinear dynamics of simply supported cylindrical shells. Nonlinear Dyn. 47, 331–352 (2012)

    Article  Google Scholar 

  15. Goncalves, P.B., del Prado, Z.J.G.N.: Low-dimensional Galerkin models for nonlinear vibration and instability analysis of cylindrical shells. Nonlinear Dyn. 41, 129–145 (2005)

    Article  MATH  Google Scholar 

  16. Amabili, M.: A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach. J. Sound Vib. 264, 1091–1125 (2003)

    Article  Google Scholar 

  17. Amabili, M., Reddy, J.N.: A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells. Int. J. Non-Linear Mech. 45, 409–418 (2010)

    Article  Google Scholar 

  18. Amabili, M.: Internal resonances in non-linear vibrations of a laminated circular cylindrical shell. Nonlinear Dyn. 69, 755–770 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Amabili, M.: Reduced-order models for nonlinear vibrations, based on natural modes: The case of the circular cylindrical shell. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371(1993), art. no. 20120474 (2013)

    Google Scholar 

  20. Rossikhin, Yu.A., Shitikova, M.V.: Application of fractional calculus for analysis of nonlinear damped vibrations of suspension bridges. ASCE J. Eng. Mech. 124, 1029–1036 (1998)

    Article  Google Scholar 

  21. Rossikhin, Yu.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Rev. 63(1), art. no. 010801-1–52 (2010)

    Google Scholar 

  22. Rossikhin, Yu.A., Shitikova, M.V.: Analysis of nonlinear vibrations of a two-degree-of-freedom mechanical system with damping modelled by a fractional desrivative. J. Eng. Math. 37, 343–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rossikhin, Yu.A., Shitikova, M.V.: Free damped non-linear vibrations of a viscoelastic plate under the two-to-one internal resonance. Mater. Sci. Forum 440–441, 29–36 (2003)

    Article  Google Scholar 

  24. Rossikhin, Yu.A., Shitikova, M.V.: Analysis of free non-linear vibrations of a viscoelastic plate under the conditions of different internal resonances. Int. J. Non-Linear Mech. 41, 313–325 (2006)

    Article  MATH  Google Scholar 

  25. Rossikhin, Yu.A., Shitikova, M.V.: A new approach for studying nonlinear dynamic response of a thin fractionally damped cylindrical shell with internal resonances of the order of \(\varepsilon\). In: Altenbach, H., Mikhasev, G.I. (eds.) Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures. Advanced Structured Materials, vol. 45, pp. 301–321. Springer, Heidelberg (2015)

    Google Scholar 

  26. Volmir, A.S.: Nonlinear Dynamics of Plates and Shells (in Russian). Nauka, Moscow (1972)

    Google Scholar 

  27. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications (in Russian). Nauka i Tekhnika, Minsk (1988) (Engl. transl. by Gordon and Breach Science Publ., Amsterdam 1993)

    Google Scholar 

  28. Clough, R.W., Penzien, J.: Dynamics of Structures. McGraw-Hill, New York (1975)

    MATH  Google Scholar 

  29. Rossikhin, Yu.A., Shitikova, M.V.: Nonlinear free damped vibrations of suspension bridges with uncertain fractional damping. J Eur des Syst Automatises 42(6–8), 879–894 (2008)

    Article  Google Scholar 

  30. Emama, S.A., Nayfeh, A.H.: Non-linear response of buckled beams to 1:1 and 3:1 internal resonances. Int. J. Non-Linear Mech. 52, 12–25 (2013)

    Article  Google Scholar 

  31. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  32. Rossikhin, Yu.A., Shitikova, M.V., Shcheglova, T.A.: Forced vibrations of a nonlinear oscillator with weak fractional damping. J. Mech. Mat. Struct. 4(9), 1619–1636 (2009)

    Article  Google Scholar 

  33. Rossikhin, Yu.A., Shitikova, M.V.: On fallacies in the decision between the Caputo and Riemann-Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator. Mech. Res. Commun. 45, 22–27 (2012)

    Article  Google Scholar 

  34. Rossikhin, Yu.A., Shitikova, M.V.: Nonlinear dynamic response of a fractionally damped cylindrical shell with a three-to-one internal resonance. Appl. Math. Comput. 257, 498–525 (2015). doi:10.106/j.amc.2015.01.018

    Google Scholar 

  35. Abramowitz, M., Stegun I. (eds.): Handbook of Mathematical Functions With Formulas, Graphs, and Tables, vol. 55. National Bureau of Standards USA, Applied Mathematical Services, Washington, DC (1964)

    Google Scholar 

  36. Bronshtein, I.N., Semendyayev, K.A.: Handbook of Mathematics, 3rd edn. Springer, New York (1985)

    Google Scholar 

Download references

Acknowledgements

This research was made possible by the Grant No. 7.22.2014/K as a Government task from the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Shitikova .

Editor information

Editors and Affiliations

Appendices

Appendix A

$$ \displaystyle\begin{array}{rcl} a_{1\mathit{mn}}^{m_{1}n_{1}m_{2}n_{2} }\! =\!\int _{ 0}^{1}\!\int _{ 0}^{2\pi }\sin \pi m_{ 1}x\sin n_{1}\varphi \cos \pi m_{2}x\sin n_{2}\varphi \cos \pi \mathit{mx}\sin n\varphi \;\mathit{dxd}\varphi,& & {}\\ a_{2\mathit{mn}}^{m_{1}n_{1}m_{2}n_{2} }\! =\!\int _{ 0}^{1}\!\int _{ 0}^{2\pi }\cos \pi m_{ 1}x\cos n_{1}\varphi \sin \pi m_{2}x\cos n_{2}\varphi \cos \pi \mathit{mx}\sin n\varphi \;\mathit{dxd}\varphi,& & {}\\ a_{3\mathit{mn}}^{m_{1}n_{1}m_{2}n_{2} }\! =\!\int _{ 0}^{1}\!\int _{ 0}^{2\pi }\sin \pi m_{ 1}x\cos n_{1}\varphi \sin \pi m_{2}x\sin n_{2}\varphi \sin \pi \mathit{mx}\cos n\varphi \;\mathit{dxd}\varphi,& & {}\\ a_{4\mathit{mn}}^{m_{1}n_{1}m_{2}n_{2} }\! =\!\int _{ 0}^{1}\!\int _{ 0}^{2\pi }\cos \pi m_{ 1}x\sin n_{1}\varphi \cos \pi m_{2}x\cos n_{2}\varphi \sin \pi \mathit{mx}\cos n\varphi \;\mathit{dxd}\varphi,& & {}\\ a_{5\mathit{mn}}^{m_{1}n_{1}m_{2}n_{2} }\! =\!\int _{ 0}^{1}\!\int _{ 0}^{2\pi }\sin \pi m_{ 1}x\sin n_{1}\varphi \sin \pi m_{2}x\sin n_{2}\varphi \sin \pi \mathit{mx}\sin n\varphi \;\mathit{dxd}\varphi,& & {}\\ a_{6\mathit{mn}}^{m_{1}n_{1}m_{2}n_{2} }\! =\!\int _{ 0}^{1}\!\int _{ 0}^{2\pi }\cos \pi m_{ 1}x\cos n_{1}\varphi \cos \pi m_{2}x\cos n_{2}\varphi \sin \pi \mathit{mx}\sin n\varphi \;\mathit{dxd}\varphi,& & {}\\ a_{7\mathit{mn}}^{m_{1}n_{1}m_{2}n_{2} }\! =\!\int _{ 0}^{1}\!\int _{ 0}^{2\pi }\cos \pi m_{ 1}x\sin n_{1}\varphi \cos \pi m_{2}x\sin n_{2}\varphi \sin \pi \mathit{mx}\sin n\varphi \;\mathit{dxd}\varphi,& & {}\\ a_{8\mathit{mn}}^{m_{1}n_{1}m_{2}n_{2} }\! =\!\int _{ 0}^{1}\!\int _{ 0}^{2\pi }\sin \pi m_{ 1}x\cos n_{1}\varphi \sin \pi m_{2}x\cos n_{2}\varphi \sin \pi \mathit{mx}\sin n\varphi \;\mathit{dxd}\varphi,& & {}\\ a_{9\mathit{mn}}^{m_{1}n_{1}m_{2}n_{2} }\! =\!\int _{ 0}^{1}\!\int _{ 0}^{2\pi }\cos \pi m_{ 1}x\sin n_{1}\varphi \cos \pi m_{2}x\sin n_{2}\varphi \sin \pi \mathit{mx}\sin n\varphi \;\mathit{dxd}\varphi,& & {}\\ a_{10\mathit{mn}}^{m_{1}n_{1}m_{2}n_{2} }\! =\!\int _{ 0}^{1}\!\int _{ 0}^{2\pi }\sin \pi m_{ 1}x\cos n_{1}\varphi \sin \pi m_{2}x\cos n_{2}\varphi \sin \pi \mathit{mx}\sin n\varphi \;\mathit{dxd}\varphi \;.& & {}\\ \end{array} $$

The above integrals could be easily calculated using the following formulas [36]:

$$\displaystyle\begin{array}{rcl} & & \sin \alpha \sin \beta \sin \gamma = \frac{1} {4}{\Bigl [\sin (\alpha +\beta -\gamma ) +\sin (\beta +\gamma -\alpha ) +\sin (\gamma +\alpha -\beta ) -\sin (\alpha +\beta +\gamma )\Bigr ]}, {}\\ & & \sin \alpha \cos \beta \cos \gamma = \frac{1} {4}{\Bigl [\sin (\alpha +\beta -\gamma ) -\sin (\beta +\gamma -\alpha ) +\sin (\gamma +\alpha -\beta ) -\sin (\alpha +\beta +\gamma )\Bigr ]}, {}\\ & & \sin \alpha \sin \beta \cos \gamma = \frac{1} {4}{\Bigl [ -\cos (\alpha +\beta -\gamma ) +\cos (\beta +\gamma -\alpha ) +\cos (\gamma +\alpha -\beta ) +\cos (\alpha +\beta +\gamma )\Bigr ]}, {}\\ & & \cos \alpha \cos \beta \cos \gamma = \frac{1} {4}{\Bigl [\cos (\alpha +\beta -\gamma ) +\cos (\beta +\gamma -\alpha ) +\cos (\gamma +\alpha -\beta ) +\cos (\alpha +\beta +\gamma )\Bigr ]}. {}\\ \end{array}$$

Appendix B

$$\displaystyle{k_{1} = \frac{a_{11}^{I}} {3\varOmega _{1}^{2}},\quad k_{2} = -\frac{a_{11}^{I}} {\varOmega _{1}^{2}},\quad k_{3} = \frac{a_{22}^{I}} {4\varOmega _{2}^{2} -\varOmega _{1}^{2}},\quad k_{4} = -\,\frac{a_{22}^{I}} {\varOmega _{1}^{2}},\quad k_{5} = \frac{a_{33}^{I}} {4\varOmega _{3}^{2} -\varOmega _{1}^{2}},}$$
$$\displaystyle{k_{6} = -\,\frac{a_{33}^{I}} {\varOmega _{1}^{2}},\quad k_{7} = \frac{a_{12}^{I}} {(\varOmega _{1} +\varOmega _{2})^{2} -\varOmega _{1}^{2}},\quad k_{8} = \frac{a_{12}^{I}} {(\varOmega _{1} -\varOmega _{2})^{2} -\varOmega _{1}^{2}},}$$
$$\displaystyle{k_{9} = \frac{a_{13}^{I}} {(\varOmega _{1} +\varOmega _{3})^{2} -\varOmega _{1}^{2}},\quad k_{10} = \frac{a_{13}^{I}} {(\varOmega _{1} -\varOmega _{3})^{2} -\varOmega _{1}^{2}},}$$
$$\displaystyle{k_{11} = \frac{a_{23}^{I}} {(\varOmega _{2} +\varOmega _{3})^{2} -\varOmega _{1}^{2}},\quad k_{12} = \frac{a_{23}^{I}} {(\varOmega _{2} -\varOmega _{3})^{2} -\varOmega _{1}^{2}}\;;}$$
$$\displaystyle{g_{1} = \frac{a_{11}^{\mathit{II}}} {4\varOmega _{1}^{2} -\varOmega _{2}^{2}},\quad g_{2} = -\frac{a_{11}^{\mathit{II}}} {\varOmega _{2}^{2}},\quad g_{3} = \frac{a_{22}^{\mathit{II}}} {3\varOmega _{2}^{2}},\quad g_{4} = -\,\frac{a_{22}^{\mathit{II}}} {\varOmega _{2}^{2}},\quad g_{5} = \frac{a_{33}^{\mathit{II}}} {4\varOmega _{3}^{2} -\varOmega _{2}^{2}},}$$
$$\displaystyle{g_{6} = -\,\frac{a_{33}^{\mathit{II}}} {\varOmega _{2}^{2}},\quad g_{7} = \frac{a_{12}^{\mathit{II}}} {(\varOmega _{1} +\varOmega _{2})^{2} -\varOmega _{2}^{2}},\quad g_{8} = \frac{a_{12}^{\mathit{II}}} {(\varOmega _{1} -\varOmega _{2})^{2} -\varOmega _{2}^{2}},}$$
$$\displaystyle{g_{9} = \frac{a_{13}^{\mathit{II}}} {(\varOmega _{1} +\varOmega _{3})^{2} -\varOmega _{2}^{2}}\;,\quad g_{10} = \frac{a_{13}^{\mathit{II}}} {(\varOmega _{1} -\varOmega _{3})^{2} -\varOmega _{2}^{2}},}$$
$$\displaystyle{g_{11} = \frac{a_{23}^{\mathit{II}}} {(\varOmega _{2} +\varOmega _{3})^{2} -\varOmega _{2}^{2}},\quad g_{12} = \frac{a_{23}^{\mathit{II}}} {(\varOmega _{2} -\varOmega _{3})^{2} -\varOmega _{2}^{2}}\;;}$$
$$\displaystyle{q_{1} = \frac{a_{11}^{\mathit{III}}} {4\varOmega _{3}^{2} -\varOmega _{1}^{2}},\quad q_{2} = -\frac{a_{11}^{\mathit{III}}} {\varOmega _{3}^{2}},\quad q_{3} = \frac{a_{22}^{\mathit{III}}} {4\varOmega _{2}^{2} -\varOmega _{3}^{2}},\quad q_{4} = -\frac{a_{22}^{\mathit{III}}} {\varOmega _{3}^{2}},}$$
$$\displaystyle{q_{5} = \frac{a_{33}^{\mathit{III}}} {3\varOmega _{3}^{2}},\quad q_{6} = -\frac{a_{33}^{\mathit{III}}} {\varOmega _{3}^{2}},\quad q_{7} = \frac{a_{12}^{\mathit{III}}} {(\varOmega _{1} +\varOmega _{2})^{2} -\varOmega _{3}^{2}},\quad q_{8} = \frac{a_{12}^{\mathit{III}}} {(\varOmega _{1} -\varOmega _{2})^{2} -\varOmega _{3}^{2}},}$$
$$\displaystyle{q_{9} = \frac{a_{13}^{\mathit{III}}} {(\varOmega _{1} +\varOmega _{3})^{2} -\varOmega _{3}^{2}},\quad q_{10} = \frac{a_{13}^{\mathit{III}}} {(\varOmega _{1} -\varOmega _{3})^{2} -\varOmega _{3}^{2}},}$$
$$\displaystyle{q_{11} = \frac{a_{23}^{\mathit{III}}} {(\varOmega _{2} +\varOmega _{3})^{2} -\varOmega _{3}^{2}},\quad q_{12} = \frac{a_{23}^{\mathit{III}}} {(\varOmega _{2} -\varOmega _{3})^{2} -\varOmega _{3}^{2}}\;;}$$
$$\displaystyle{d_{1}^{J} = 2a_{ 11}^{J}(k_{ 1} + 2k_{2}) + a_{12}^{J}(g_{ 1} + 2g_{2}) + a_{13}^{J}(q_{ 1} + 2q_{2}),}$$
$$\displaystyle{d_{2}^{J} = 4a_{ 11}^{J}k_{ 4}+2a_{22}^{J}(g_{ 7}+g_{8})+a_{12}^{J}(2g_{ 4}+k_{7}+k_{8})+2a_{13}^{J}q_{ 4}+a_{23}^{J}(q_{ 7}+q_{8}),}$$
$$\displaystyle{d_{3}^{J} = 4a_{ 11}^{J}k_{ 6}+2a_{33}^{J}(q_{ 9}+q_{10})+2a_{12}^{J}g_{ 6}+a_{13}^{J}(2q_{ 6}+k_{9}+k_{10})+a_{23}^{J}(g_{ 9}+g_{10}),}$$
$$\displaystyle{d_{4}^{J} = 2a_{ 22}^{J}(g_{ 3} + 2g_{4}) + a_{12}^{J}(k_{ 3} + 2k_{4}) + a_{23}^{J}(q_{ 3} + 2q_{4}),}$$
$$\displaystyle{d_{5}^{J} = 2a_{ 11}^{J}(k_{ 7}+k_{8})+4a_{22}^{J}g_{ 2}+a_{12}^{J}(2k_{ 2}+g_{7}+g_{8})+a_{12}^{J}(q_{ 7}+q_{8})+2a_{23}^{J}q_{ 2},}$$
$$\displaystyle{d_{6}^{J} = 4a_{ 22}^{J}g_{ 6}+2a_{33}^{J}(q_{ 11}+q_{12})+2a_{12}^{J}k_{ 6}+a_{13}^{J}(k_{ 11}+k_{12})+a_{23}^{J}(2q_{ 6}+g_{11}+g_{12}),}$$
$$\displaystyle{d_{7}^{J} = 2a_{ 33}^{J}(q_{ 5} + 2q_{6}) + a_{13}^{J}(k_{ 5} + 2k_{6}) + a_{23}^{J}(g_{ 5} + 2g_{6}),}$$
$$\displaystyle{d_{8}^{J} = 2a_{ 11}^{J}(k_{ 9}+k_{10})+4a_{33}^{J}q_{ 2}+a_{12}^{J}(g_{ 9}+g_{10})+a_{13}^{J}(2k_{ 2}+q_{9}+q_{10})+2a_{23}^{J}g_{ 2},}$$
$$\displaystyle{d_{9}^{J} = 2a_{ 22}^{J}(g_{ 11}+g_{12})+4a_{33}^{J}q_{ 4}+a_{12}^{J}(k_{ 11}+k_{12})+2a_{13}^{J}k_{ 4}+a_{23}^{J}(2g_{ 4}+q_{11}+q_{12}),}$$
$$\displaystyle{d_{10}^{J} = 2a_{ 11}^{J}k_{ 1} + a_{12}^{J}g_{ 1} + a_{13}^{J}q_{ 1},\quad d_{11}^{J} = 2a_{ 22}^{J}g_{ 3} + a_{12}^{J}k_{ 3} + a_{23}^{J}q_{ 3},}$$
$$\displaystyle{d_{12}^{J} = 2a_{ 33}^{J}q_{ 5} + a_{13}^{J}k_{ 5} + a_{23}^{J}g_{ 5}\;;}$$
$$\displaystyle{e_{1}^{J} = 2a_{ 11}^{J}k_{ 11}+2a_{22}^{J}g_{ 9}+2a_{33}^{J}q_{ 7}+a_{12}^{J}(g_{ 11}+k_{9})+a_{13}^{J}(q_{ 11}+k_{7})+a_{23}^{J}(q_{ 9}+g_{7}),}$$
$$\displaystyle{e_{2}^{J} = 2a_{ 11}^{J}k_{ 12}+2a_{22}^{J}g_{ 10}+2a_{33}^{J}q_{ 7}+a_{12}^{J}(g_{ 12}+k_{10})+a_{13}^{J}(q_{ 12}+k_{7})+a_{23}^{J}(q_{ 10}+g_{7}),}$$
$$\displaystyle{e_{3}^{J} = 2a_{ 11}^{J}k_{ 12}+2a_{22}^{J}g_{ 9}+2a_{33}^{J}q_{ 8}+a_{12}^{J}(g_{ 12}+k_{9})+a_{13}^{J}(q_{ 12}+k_{8})+a_{23}^{J}(q_{ 9}+g_{8}),}$$
$$\displaystyle{e_{4}^{J} = 2a_{ 11}^{J}k_{ 11}+2a_{22}^{J}g_{ 10}+2a_{33}^{J}q_{ 8}+a_{12}^{J}(g_{ 11}+k_{10})+a_{13}^{J}(q_{ 11}+k_{8})+a_{23}^{J}(q_{ 9}+g_{8})\;;}$$
$$\displaystyle{c_{1}^{J} = 2a_{ 11}^{J}k_{ 3} + 2a_{22}^{J}g_{ 7} + a_{12}^{J}(g_{ 3} + k_{7}) + a_{13}^{J}q_{ 3} + a_{23}^{J}q_{ 7},}$$
$$\displaystyle{c_{2}^{J} = 2a_{ 11}^{J}k_{ 5} + 2a_{33}^{J}q_{ 9} + a_{12}^{J}g_{ 5} + a_{13}^{J}(q_{ 5} + k_{9}) + a_{23}^{J}g_{ 9},}$$
$$\displaystyle{c_{3}^{J} = 2a_{ 11}^{J}k_{ 7} + 2a_{22}^{J}g_{ 1} + a_{12}^{J}(g_{ 7} + k_{1}) + a_{13}^{J}q_{ 7} + a_{23}^{J}q_{ 1},}$$
$$\displaystyle{c_{4}^{J} = 2a_{ 11}^{J}k_{ 9} + 2a_{33}^{J}q_{ 1} + a_{12}^{J}g_{ 9} + a_{13}^{J}(q_{ 9} + k_{1}) + a_{23}^{J}g_{ 1},}$$
$$\displaystyle{c_{5}^{J} = 2a_{ 22}^{J}g_{ 5} + 2a_{33}^{J}q_{ 11} + a_{12}^{J}k_{ 5} + a_{13}^{J}k_{ 11} + a_{23}^{J}(q_{ 5} + g_{11}),}$$
$$\displaystyle{c_{6}^{J} = 2a_{ 22}^{J}g_{ 11} + 2a_{33}^{J}q_{ 3} + a_{12}^{J}k_{ 11} + a_{13}^{J}k_{ 3} + a_{23}^{J}(q_{ 11} + g_{3}),}$$
$$\displaystyle{c_{7}^{J} = 2a_{ 11}^{J}k_{ 8} + 2a_{22}^{J}g_{ 1} + a_{12}^{J}(g_{ 8} + k_{1}) + a_{13}^{J}q_{ 8} + a_{23}^{J}q_{ 1},}$$
$$\displaystyle{c_{8}^{J} = 2a_{ 11}^{J}k_{ 10} + 2a_{33}^{J}q_{ 1} + a_{12}^{J}g_{ 10} + a_{13}^{J}(q_{ 10} + k_{1}) + a_{23}^{J}g_{ 1},}$$
$$\displaystyle{c_{9}^{J} = 2a_{ 11}^{J}k_{ 3} + 2a_{22}^{J}g_{ 8} + a_{12}^{J}(g_{ 3} + k_{8}) + a_{13}^{J}q_{ 3} + a_{23}^{J}q_{ 8},}$$
$$\displaystyle{c_{10}^{J} = 2a_{ 11}^{J}k_{ 5} + 2a_{33}^{J}q_{ 10} + a_{12}^{J}g_{ 5} + a_{13}^{J}(q_{ 5} + k_{10}) + a_{23}^{J}g_{ 10},}$$
$$\displaystyle{c_{11}^{J} = 2a_{ 22}^{J}g_{ 12} + 2a_{33}^{J}q_{ 3} + a_{12}^{J}k_{ 12} + a_{13}^{J}k_{ 3} + a_{23}^{J}(q_{ 12} + g_{3}),}$$
$$\displaystyle{c_{12}^{J} = 2a_{ 22}^{J}g_{ 5} + 2a_{33}^{J}q_{ 12} + a_{12}^{J}k_{ 5} + a_{13}^{J}k_{ 12} + a_{23}^{J}(q_{ 5} + g_{12}).}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rossikhin, Y., Shitikova, M. (2015). Analysis of Non-linear Vibrations of a Fractionally Damped Cylindrical Shell Under the Conditions of Combinational Internal Resonance. In: Mastorakis, N., Bulucea, A., Tsekouras, G. (eds) Computational Problems in Science and Engineering. Lecture Notes in Electrical Engineering, vol 343. Springer, Cham. https://doi.org/10.1007/978-3-319-15765-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15765-8_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15764-1

  • Online ISBN: 978-3-319-15765-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics