Skip to main content

Exploring the Design Space of Signed-Binary Adder Cells

  • Chapter
  • 955 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 343))

Abstract

Arithmetic based on signed-binary number representation is an alternative to carry-save arithmetic. Both offer adders with word-length independent latencies. Comparing both approaches requires optimized adder cells. Small and fast full adder designs have been introduced. A thorough investigation of signed-binary adder cells is still missing. We show that for an example signed-binary encoding scheme the design space consists of 238 different truth tables. Each represents a bit-level signed-binary adder cell. We proposed a new method to enumerate and analyze such a huge design space to gain small area, low power, or low latency signed-binary adder cells and show the limitations of our approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Carter, T.M., Robertson, J.E.: The set theory of arithmetic decomposition. IEEE Trans. Comput. 39, 993–1005 (1990)

    Article  Google Scholar 

  2. Avizienis, A.A. Signed-digit number representations for fast parallel arithmetic. IRE Trans. Electron. Comput. 10(3), 389–400 (1961)

    Article  MathSciNet  Google Scholar 

  3. Chow, C.Y., Robertson, J.E.: Logical design of a redundant binary adder. In: Proceedings of the 4th Symposium on Computer Arithmetic, pp. 109–115 (1978)

    Google Scholar 

  4. Zehendner, E.: Reguläre parallele Addierer für redundante binäre Zahlsysteme. Technical Report, Report 255, Institut für Mathematik der University ät Augsburg (1992)

    Google Scholar 

  5. Alioto, M., Palumbo, G.: Analysis and comparison on full adder block in submicron technology. IEEE Trans. Very Large Scale Integr. VLSI Syst. 10(6), 806–823 (2002)

    Article  Google Scholar 

  6. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Trans. AIEE 72(9), 593–599 (1953)

    MathSciNet  Google Scholar 

  7. Veitch, E.W.: A chart method for simplifying truth functions. In: Proceedings of the Association for Computing Machinery, Pittsburgh, May 1952, pp. 127–133

    Google Scholar 

  8. Rudell, R.L.: Multiple-Valued Logic Minimization for PLA Syntheis. Technical Report, UCB/ERL M86/65, Electrical Engineering and Computer Science Department, University of California (1986)

    Google Scholar 

  9. Agrawal, P., Agrawal, V.D., Biswas, N.N.: Multiple output minimization. In: Proceedings of the 22nd Design Automation Conference, June 1985, pp. 674–680

    Google Scholar 

  10. Cerny, E., Mange, D., Sanchez, E.: Synthesis of minimal binary decision trees. IEEE Trans. Comput. C-28(7), 472–482 (1979)

    Article  Google Scholar 

  11. Lloris, A., Gomez, J.F., Roman, R.: Using decision trees for the minimization of multiple-valued functions. Int. J. Electron. 75(6), 1035–1041 (1993)

    Article  Google Scholar 

  12. Rushdi, A.M., Ba-Rukab, O.M.: A purely map procedure for two-level multiple-output logic minimization. Int. J. Comput. Math. 84, 1–10 (2007)

    Article  MATH  Google Scholar 

  13. Malik, A.A.: Optimization of primitive gate networks using multiple output two-level minimization. In: Proceedings of the 29th ACM/IEEE Design Automation Conference (DAC ’92), pp. 449–453. IEEE Computer Society Press, Los Alamitos (1992)

    Google Scholar 

  14. Kagaris, D., Haniotakis, T.: Transistor-level optimization of supergates. In: Proceedings of 7th International Symposium on Quality Electronic Design (ISQED ’06), March 2006, pp. 685–690

    Google Scholar 

  15. Kagaris, D., Haniotakis, T.: Transistor-level synthesis for low-power applications. In: Proceedings of the 8th International Symposium on Quality Electronic Design (ISQED ’07), March 2007, pp. 607–612

    Google Scholar 

  16. Liu, C.-P.L., Abraham, J.A.: Transistor level synthesis for static cmos combinational circuits. In: Proceedings of the 9th Great Lakes Symposium on VLSI, March 1999, pp. 172–175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Neuhäuser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Neuhäuser, D. (2015). Exploring the Design Space of Signed-Binary Adder Cells. In: Mastorakis, N., Bulucea, A., Tsekouras, G. (eds) Computational Problems in Science and Engineering. Lecture Notes in Electrical Engineering, vol 343. Springer, Cham. https://doi.org/10.1007/978-3-319-15765-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15765-8_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15764-1

  • Online ISBN: 978-3-319-15765-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics