Advertisement

Dorsoventral Hippocampus: Subregional Importance in Anxiety and Olfactory Learning and Memory

  • Christy S. S. WeedenEmail author
Chapter

Abstract

Evidence from several study techniques has provided substantial support to suggest that the hippocampus (HPP) plays an important role in learning and memory, which has been generally accepted by the scientific community. Dorsoventral lesion studies of the HPP, along with electrophysiological and other methods, have indicated that the dorsal axis of the HPP plays an important role in spatial processing and the ventral axis is important for anxiety as well as olfactory learning and memory. For example, evidence indicates that the hippocampal CA1 subregion is important in temporal learning and memory processes for spatial (dorsal) as well as olfactory (ventral) information. Studies have shown that the same dorsoventral relationship may hold for the CA3 subregion in pattern completion processes for odor information. Recent evidence has indicated parallel processing fidelity across the dorsoventral axis of the dentate gyrus (DG) for spatial and olfactory pattern separation. While there have been extensive investigations of spatial pattern completion, pattern separation, and temporal learning and an ever-increasing consensus on those processes, there have been far fewer reports and thus a lack of consensus for definitions of these parallel processes in regard to olfaction, with subregional anxiety processes being least understood. Further studies are necessary to understand how ventral subregions of the HPP contribute to learning and memory. Such research may yield increasing understanding of processes such as “odor pattern completion” and “anxiety-based pattern separation.”

Keywords

Hippocampus Learning Dorsal Ventral Olfactory Anxiety Spatial 

References

  1. Amaral, D. G., & Witter, M. P. (1995). Hippocampal formation. In G. Paxinos (Ed.), The rat nervous system (pp. 443–493). San Diego: Academic.Google Scholar
  2. Bakker, A., Kirwan, C. B., Miller, M., & Stark, C. E. L. (2008). Pattern separation in the human hippocampal CA3 and dentate gyrus. Science (New York, N.Y.), 319(5870), 1640–1642. doi:10.1126/science.1152882.CrossRefGoogle Scholar
  3. Bannerman, D. M., Yee, B. K., Good, M. A., Heupel, M. J., Iversen, S. D., & Rawlins, J. N. (1999). Double dissociation of function within the hippocampus: A comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behavioral Neuroscience, 113(6), 1170–1188.CrossRefPubMedGoogle Scholar
  4. Bannerman, D. M., Grubb, M., Deacon, R. M. J., Yee, B. K., Feldon, J., & Rawlins, J. N. P. (2003). ScienceDirect.com—behavioural brain research—ventral hippocampal lesions affect anxiety but not spatial learning. Behavioural Brain Research, 139(1–2), 197–213.CrossRefPubMedGoogle Scholar
  5. Bannerman, D. M., Rawlins, J. N. P., McHugh, S. B., Deacon, R. M. J., Yee, B. K., Bast, T., et al. (2004). Regional dissociations within the hippocampus—memory and anxiety. Neuroscience & Biobehavioral Reviews, 28(3), 273–283. doi:10.1016/j.neubiorev.2004.03.004.CrossRefGoogle Scholar
  6. Baron-Cohen, S., Ring, H. A., Bullmore, E. T., Wheelwright, S., Ashwin, C., & Williams, S. C. (2000). The amygdala theory of autism. Neuroscience & Biobehavioral Reviews, 24(3), 355–364.CrossRefGoogle Scholar
  7. Bowers, D., Verfaellie, M., Valenstein, E., & Heilman, K. M. (1988). Impaired acquisition of temporal information in retrosplenial amnesia. Brain and Cognition, 8(1), 47–66. doi:10.1016/0278-2626(88)90038-3.CrossRefPubMedGoogle Scholar
  8. Bramham, C. R., Southard, T., Ahlers, S. T., & Sarvey, J. M. (1998). Acute cold stress leading to elevated corticosterone neither enhances synaptic efficacy nor impairs LTP in the dentate gyrus of freely moving rats. Brain Research, 789(2), 245–255.CrossRefPubMedGoogle Scholar
  9. Chiba, A. A., Kesner, R. P., & Reynolds, A. M. (1994). Memory for spatial location as a function of temporal lag in rats: Role of hippocampus and medial prefrontal cortex. Behavioral and Neural Biology, 61(2), 123–131.CrossRefPubMedGoogle Scholar
  10. Christie, B. R., & Cameron, H. A. (2006). Neurogenesis in the adult hippocampus. Hippocampus, 16(3), 199–207. doi:10.1002/hipo.20151.CrossRefPubMedGoogle Scholar
  11. Cleland, T. A., Morse, A., Yue, E. L., & Linster, C. (2002). Behavioral models of odor similarity. Behavioral Neuroscience, 116(2), 222–231. doi:10.1037//0735-7044.116.2.222.CrossRefPubMedGoogle Scholar
  12. Colombo, M., Fernandez, T., Nakamura, K., & Gross, C. G. (1998). Functional differentiation along the anterior-posterior axis of the hippocampus in monkeys. Journal of Neurophysiology, 80(2), 1002–1005.PubMedGoogle Scholar
  13. Decker, M. W., Curzon, P., & Brioni, J. D. (1995). Influence of separate and combined septal and amygdala lesions on memory, acoustic startle, anxiety, and locomotor activity in rats. Neurobiology of Learning and Memory, 64(2), 156–168. doi:10.1006/nlme.1995.1055.CrossRefPubMedGoogle Scholar
  14. Dedovic, K., Duchesne, A., Andrews, J., Engert, V., & Pruessner, J. C. (2009). The brain and the stress axis: The neural correlates of cortisol regulation in response to stress. NeuroImage, 47(3), 864–871. doi:10.1016/j.neuroimage.2009.05.074.CrossRefPubMedGoogle Scholar
  15. Dong, H.-W., Swanson, L. W., Chen, L., Fanselow, M. S., & Toga, A. W. (2009). Genomic-anatomic evidence for distinct functional domains in hippocampal field CA1. Proceedings of the National Academy of Sciences of the United States of America, 106(28), 11794–11799. doi:10.1073/pnas.0812608106.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Eadie, B. D., Zhang, W. N., Boehme, F., Gil-Mohapel, J., Kainer, L., Simpson, J. M., et al. (2009). Fmr1 knockout mice show reduced anxiety and alterations in neurogenesis that are specific to the ventral dentate gyrus. Neurobiology of Disease, 36(2), 361–373. doi:10.1016/j.nbd.2009.08.001.CrossRefPubMedGoogle Scholar
  17. Eichenbaum, H., Mathews, P., & Cohen, N. J. (1989). Further studies of hippocampal representation during odor discrimination learning. Behavioral Neuroscience, 103(6), 1207–1216.Google Scholar
  18. Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience, 8(11), 1481–1489. doi:10.1038/nn1579.CrossRefPubMedGoogle Scholar
  19. Fanselow, M. S. (1984). What is conditioned fear? Trends in Neurosciences, 7(12), 460–462.Google Scholar
  20. Fanselow, M. S., & Dong, H.-W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65(1), 7–19. doi:10.1016/j.neuron.2009.11.031.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Gage, F. H., & Thompson, R. G. (1980). Differential distribution of norepinephrine and serotonin along the dorsal-ventral axis of the hippocampal formation. Brain Research Bulletin, 5(6), 771–773. http://pdn.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271056&_user=10843&_pii=0361923080902208&_check=y&_origin=article&_zone=toolbar&_coverDate=31-Dec-1980&view=c&originContentFamily=serial&wchp=dGLbVlk-zSkzk&md5=2857224f44d72adfdf9ea3facaa8bbee&pid=1-s2.0-0361923080902208-main.pdf&sqtrkid=0.21771737933158875. Accessed 12 June 2013.
  22. Gilbert, M., Racine, R. J., & Smith, G. K. (1985). Epileptiform burst responses in ventral vs dorsal hippocampal slices. Brain Research, 361(1–2), 389–391.CrossRefPubMedGoogle Scholar
  23. Gilbert, P. E., Kesner, R. P., & Lee, I. (2001). Dissociating hippocampal subregions: A double dissociation between dentate gyrus and CA1. Hippocampus, 11(6), 626–636. doi:10.1002/hipo.1077.CrossRefPubMedGoogle Scholar
  24. Gold, A. E., & Kesner, R. P. (2005). The role of the CA3 subregion of the dorsal hippocampus in spatial pattern completion in the rat. Hippocampus, 15(6), 808–814. doi:10.1002/hipo.20103.CrossRefPubMedGoogle Scholar
  25. Goodrich-Hunsaker, N. J., Hunsaker, M. R., & Kesner, R. P. (2008). The interactions and dissociations of the dorsal hippocampus subregions: How the dentate gyrus, CA3, and CA1 process spatial information. Behavioral Neuroscience, 122(1), 16–26. doi:10.1037/0735-7044.122.1.16.CrossRefPubMedGoogle Scholar
  26. Gourevitch, B., Kay, L. M., & Martin, C. (2010). Directional coupling from the olfactory bulb to the hippocampus during a go/no-go odor discrimination task. Journal of Neurophysiology, 103(5), 2633–2641. doi:10.1152/jn.01075.2009.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Gray, J. A., & McNaughton, N. (2000). The Neuropsychology of Anxiety (2nd ed.). USA: Oxford University Press.Google Scholar
  28. Gulyás, A. I., Tóth, K., McBain, C. J., & Freund, T. F. (1998). Stratum radiatum giant cells: A type of principal cell in the rat hippocampus. The European journal of neuroscience, 10(12), 3813–3822.CrossRefPubMedGoogle Scholar
  29. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801–806. doi:10.1038/nature03721.CrossRefPubMedGoogle Scholar
  30. Heale, V. R., & Vanderwolf, C. H. (1999). Odor-induced fast waves in the dentate gyrus depend on a pathway through posterior cerebral cortex: Effects of limbic lesions and trimethyltin. Brain Research Bulletin, 50(4), 291–299.CrossRefPubMedGoogle Scholar
  31. Hughes, K. C., & Shin, L. M. (2011). Functional neuroimaging studies of post-traumatic stress disorder. Expert Review of Neurotherapeutics, 11(2), 275–285. doi:10.1586/ern.10.198.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Hunsaker, M. R., & Kesner, R. P. (2012). The operation of pattern separation and pattern completion processes associated with different attributes or domains of memory. Neuroscience & Biobehavioral Reviews. doi:10.1016/j.neubiorev.2012.09.014.Google Scholar
  33. Hunsaker, M. R., Fieldsted, P. M., Rosenberg, J. S., & Kesner, R. P. (2008). Dissociating the roles of dorsal and ventral CA1 for the temporal processing of spatial locations, visual objects, and odors. Behavioral Neuroscience, 122(3), 643–650. doi:10.1037/0735-7044.122.3.643.CrossRefPubMedGoogle Scholar
  34. Jayatissa, M. N., Bisgaard, C., Tingström, A., Papp, M., & Wiborg, O. (2006). Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 31(11), 2395–2404. doi:10.1038/sj.npp.1301041.CrossRefGoogle Scholar
  35. Jung, M. W., Wiener, S. I., & McNaughton, B. L. (1994). Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. The Journal of neuroscience: the official journal of the Society for Neuroscience, 14(12), 7347–7356.Google Scholar
  36. Kavushansky, A., Vouimba, R.-M., Cohen, H., & Richter-Levin, G. (2006). Activity and plasticity in the CA1, the dentate gyrus, and the amygdala following controllable vs. uncontrollable water stress. Hippocampus, 16(1), 35–42. doi:10.1002/hipo.20130.CrossRefPubMedGoogle Scholar
  37. Kent, K., Hess, K., Tonegawa, S., & Small, S. A. (2007). CA3 NMDA receptors are required for experience-dependent shifts in hippocampal activity. Hippocampus, 17(10), 1003–1011. doi:10.1002/hipo.20332.CrossRefPubMedGoogle Scholar
  38. Kesner, R. P. (2009). Tapestry of memory. Behavioral Neuroscience, 123(1), 1–13. doi:10.1037/a0014004.CrossRefPubMedGoogle Scholar
  39. Kesner, R. P., & Hunsaker, M. R. (2010). The temporal attributes of episodic memory. Behavioural Brain Research, 215(2), 299–309. doi:10.1016/j.bbr.2009.12.029.CrossRefPubMedGoogle Scholar
  40. Kesner, R. P., Gilbert, P. E., & Barua, L. A. (2002). The role of the hippocampus in memory for the temporal order of a sequence of odors. Behavioral Neuroscience, 116(2), 286–290.CrossRefPubMedGoogle Scholar
  41. Kesner, R. P., Hunsaker, M. R., & Ziegler, W. (2010). The role of the dorsal CA1 and ventral CA1 in memory for the temporal order of a sequence of odors. Neurobiology of Learning and Memory, 93(1), 111–116. doi:10.1016/j.nlm.2009.08.010.CrossRefPubMedGoogle Scholar
  42. Kesner, R. P., Hunsaker, M. R., & Ziegler, W. (2011). The role of the dorsal and ventral hippocampus in olfactory working memory. Neurobiology of Learning and Memory, 96(2), 361–366. doi:10.1016/j.nlm.2011.06.011.CrossRefPubMedGoogle Scholar
  43. Kjelstrup, K. G., Tuvnes, F. A., Steffenach, H.-A., Murison, R., Moser, E. I., & Moser, M.-B. (2002). Reduced fear expression after lesions of the ventral hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10825–10830. doi:10.1073/pnas.152112399.Google Scholar
  44. Lazar, R. M., & Mohr, J. P. (2011). Revisiting the contributions of Paul Broca to the study of aphasia. Neuropsychology Review, 21, 236–239. doi:10.1007/s11065-011-9176-8.CrossRefPubMedGoogle Scholar
  45. Lee, I., & Kesner, R. P. (2004). Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus, 14(3), 301–310. doi:10.1002/hipo.10177.CrossRefPubMedGoogle Scholar
  46. Levita, L., & Muzzio, I. A. (2010). Role of the hippocampus in goal-oriented tasks requiring retrieval of spatial versus non-spatial information. Neurobiology of Learning and Memory, 93(4), 581–588. doi:10.1016/j.nlm.2010.02.006.CrossRefPubMedGoogle Scholar
  47. Magariños, A. M., McEwen, B. S., Flügge, G., & Fuchs, E. (1996). Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 16(10), 3534–3540.Google Scholar
  48. Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 4398–4403. doi:10.1073/pnas.070039597.Google Scholar
  49. McHugh, S. B., Deacon, R. M. J., Rawlins, J. N. P., & Bannerman, D. M. (2004). Amygdala and ventral hippocampus contribute differentially to mechanisms of fear and anxiety. Behavioral Neuroscience, 118(1), 63–78. doi:10.1037/0735-7044.118.1.63.CrossRefPubMedGoogle Scholar
  50. Moser, M. B., & Moser, E. I. (1998a). Distributed encoding and retrieval of spatial memory in the hippocampus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(18), 7535–7542.Google Scholar
  51. Moser, M. B., & Moser, E. I. (1998b). Functional differentiation in the hippocampus. Hippocampus, 8(6), 608–619. doi:10.1002/(SICI)1098-1063(1998)8:6<608::AID-HIPO3>3.0.CO;2-7.CrossRefPubMedGoogle Scholar
  52. Moser, E., Moser, M. B., & Andersen, P. (1993). Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. The Journal of Neuroscience: The Official journal of the Society for Neuroscience, 13(9), 3916–3925.Google Scholar
  53. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.Google Scholar
  54. Pandis, C., Sotiriou, E., Kouvaras, E., Asprodini, E., Papatheodoropoulos, C., & Angelatou, F. (2006). Differential expression of NMDA and AMPA receptor subunits in rat dorsal and ventral hippocampus. Neuroscience, 140(1), 163–175. doi:10.1016/j.neuroscience.2006.02.003.CrossRefPubMedGoogle Scholar
  55. Papatheodoropoulos, C., & Kostopoulos, G. (2000). Decreased ability of rat temporal hippocampal CA1 region to produce long-term potentiation. Neuroscience Letters, 279(3), 177–180.CrossRefPubMedGoogle Scholar
  56. Pentkowski, N. S., Blanchard, D. C., Lever, C., Litvin, Y., & Blanchard, R. J. (2006). Effects of lesions to the dorsal and ventral hippocampus on defensive behaviors in rats. European Journal of Neuroscience, 23(8), 2185–2196. doi:10.1111/j.1460-9568.2006.04754.x.CrossRefPubMedGoogle Scholar
  57. Rogers, J. L., Hunsaker, M. R., & Kesner, R. P. (2006). Effects of ventral and dorsal CA1 subregional lesions on trace fear conditioning. Neurobiology of Learning and Memory, 86(1), 72–81. doi:10.1016/j.nlm.2006.01.002.CrossRefPubMedGoogle Scholar
  58. Rolls, E. T., & Kesner, R. P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. Progress in Neurobiology, 79(1), 1–48. doi:10.1016/j.pneurobio.2006.04.005.CrossRefPubMedGoogle Scholar
  59. Rolls, E. T., Treves, A., Foster, D., & Perez-Vicente, C. (1997). Simulation studies of the CA3 hippocampal subfield modelled as an attractor neural network. Neural Networks, 10(9), 1559–1569. doi:10.1016/S0893-6080(97)00092-0.CrossRefGoogle Scholar
  60. Royer, S., Sirota, A., Patel, J., & Buzsaki, G. (2010). Distinct representations and theta dynamics in dorsal and ventral hippocampus. Journal of Neuroscience, 30(5), 1777–1787. doi:10.1523/JNEUROSCI.4681-09.2010.PubMedCentralCrossRefPubMedGoogle Scholar
  61. Sano, K. (1997). Hippocampus and epilepsy surgery. Epilepsia, 38(s6), 4–10. doi:10.1111/j.1528-1157.1997.tb00098.xCrossRefGoogle Scholar
  62. Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20(1), 11–21.PubMedCentralCrossRefPubMedGoogle Scholar
  63. Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science (New York, N.Y.), 253(5026), 1380–1386.CrossRefGoogle Scholar
  64. Taube, J. S. (2007). The head direction signal: Origins and sensory-motor integration. Annual Review of Neuroscience, 30, 181–207. doi:10.1146/annurev.neuro.29.051605.112854.CrossRefPubMedGoogle Scholar
  65. Treit, D., Pesold, C., & Rotzinger, S. (1993). Noninteractive effects of diazepam and amygdaloid lesions in two animal models of anxiety. Behavioral Neuroscience, 107(6), 1099–1105.CrossRefPubMedGoogle Scholar
  66. Van Groen, T., & Wyss, J. M. (1990). Extrinsic projections from area CA1 of the rat hippocampus: Olfactory, cortical, subcortical, and bilateral hippocampal formation projections. The Journal of Comparative Neurology, 302(3), 515–528. doi:10.1002/cne.903020308.CrossRefPubMedGoogle Scholar
  67. Vanderwolf, C. H. (1992). Hippocampal activity, olfaction, and sniffing: An olfactory input to the dentate gyrus. Brain Research, 593(2), 197–208.CrossRefPubMedGoogle Scholar
  68. Vouimba, R.-M., Yaniv, D., Diamond, D., & Richter-Levin, G. (2004). Effects of inescapable stress on LTP in the amygdala versus the dentate gyrus of freely behaving rats. The European Journal of Neuroscience, 19(7), 1887–1894. doi:10.1111/j.1460-9568.2004.03294.x.CrossRefPubMedGoogle Scholar
  69. Walsh, R. N., & Cummins, R. A. (1976). The open-field test: A critical review. Psychological Bulletin, 83(3), 482–504.CrossRefPubMedGoogle Scholar
  70. Weeden, C. S. S., Hu, N. J., Ho, L. Y. N., & Kesner, R. P. (2012). The role of the ventral dentate gyrus in olfactory learning and memory. Presented at the Society for Neuroscience Abstracts, New Orleans.Google Scholar
  71. Witter, M. P. (1993). Organization of the entorhinal-hippocampal system: A review of current anatomical data. Hippocampus, 3 (Spec No), 33–44.PubMedGoogle Scholar
  72. Witter, M. P., Van Hoesen, G. W., & Amaral, D. G. (1989). Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 9(1), 216–228..Google Scholar
  73. Yassa, M. A., Stark, S. M., Bakker, A., Albert, M. S., Gallagher, M., & Stark, C. E. L. (2010). High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment. NeuroImage, 51(3), 1242–1252. doi:10.1016/j.neuroimage.2010.03.040.PubMedCentralCrossRefPubMedGoogle Scholar
  74. Yoon, T., & Otto, T. (2007). Differential contributions of dorsal vs. ventral hippocampus to auditory trace fear conditioning. Neurobiology of Learning and Memory, 87(4), 464–475. doi:10.1016/j.nlm.2006.12.006.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Section on NeuroplasticityNational Institute of Mental Health, National Institutes of HealthBethesdaUSA

Personalised recommendations