Advertisement

Pattern Completion and Pattern Separation Mechanisms in the Hippocampus

  • Edmund T. RollsEmail author
Chapter

Abstract

The mechanisms for pattern completion and pattern separation are described in the context of a theory of hippocampal function in which the hippocampal CA3 system operates as a single attractor or autoassociation network to enable rapid, one-trial associations between any spatial location (place in rodents, or spatial view in primates) and an object or reward, and to provide for completion of the whole memory during recall from any part. The factors important in the pattern completion in CA3 together with a large number of independent memories stored in CA3 include a sparse distributed representation which is enhanced by the graded firing rates of CA3 neurons, representations that are independent due to the randomizing effect of the mossy fibers, heterosynaptic long-term depression as well as long-term potentiation in the recurrent collateral synapses, and diluted connectivity to minimize the number of multiple synapses between any pair of CA3 neurons which otherwise distort the basins of attraction. Recall of information from CA3 is implemented by the entorhinal cortex perforant path synapses to CA3 cells, which in acting as a pattern associator allow some pattern generalization. Pattern separation is performed in the dentate granule cells using competitive learning to convert grid-like entorhinal cortex firing to place-like fields. Pattern separation in CA3, which is important for completion of any one of the stored patterns from a fragment, is provided for by the randomizing effect of the mossy fiber synapses to which neurogenesis may contribute, by the large number of dentate granule cells each with a sparse representation, and by the sparse independent representations in CA3. Recall to the neocortex is achieved by a reverse hierarchical series of pattern association networks implemented by the hippocampo-cortical backprojections, each one of which performs some pattern generalization to retrieve a complete pattern of cortical firing in higher-order cortical areas.

Keywords

Hippocampus Attractor network Competitive network Pattern association network Episodic memory Recall Pattern separation Pattern completion Pattern generalization 

Notes

Acknowledgments

Different parts of the research described here were supported by Program Grants from the Medical Research Council, by a Human Frontier Science Program Grant, by an EEC BRAIN grant, by the MRC Oxford Interdisciplinary Research Centre in Cognitive Neuroscience, by the Oxford McDonnell-Pew Centre in Cognitive Neuroscience, and by the Oxford Centre for Computational Neuroscience. The author has performed the experimental and theoretical work which is incorporated in some of the ideas presented here on the hippocampus with many colleagues, including Alessandro Treves, Simon Stringer, Ray Kesner, Robert Robertson, Pierre Georges-François, Shane O’Mara, and Alain Berthoz, and their contributions are sincerely acknowledged. Pdfs of some of the papers cited are available at www.oxcns.org.

References

  1. Acsady, L., Kamondi, A., Sik, A., Freund, T., & Buzsaki, G. (1998). GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. The Journal of Neuroscience, 18(9), 3386–3403.PubMedGoogle Scholar
  2. Amaral, D. G. (1987). Memory: Anatomical organization of candidate brain regions. In V. B. Mountcastle (Ed.), Handbook of physiology. section 1, the nervous system (Vol. V, higher functions of the brain, pp. 211–294). Washington DC: American Physiological Society.Google Scholar
  3. Amaral, D. G. (1993). Emerging principles of intrinsic hippocampal organisation. Current Opinion in Neurobiology, 3, 225–229.PubMedCrossRefGoogle Scholar
  4. Amaral, D. G., & Witter, M. P. (1989). The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience, 31, 571–591.PubMedCrossRefGoogle Scholar
  5. Amaral, D. G., & Witter, M. P. (1995). The hippocampal formation. In G. Paxinos (Ed.), The rat nervous system (pp. 443–493). San Diego: Academic.Google Scholar
  6. Amaral, D. G., Ishizuka, N., & Claiborne, B. (1990). Neurons, numbers and the hippocampal network. Progress in Brain Research, 83, 1–11.PubMedCrossRefGoogle Scholar
  7. Amaral, D. G., Price, J. L., Pitkanen, A., & Carmichael, S. T. (1992). Anatomical organization of the primate amygdaloid complex. In J. P. Aggleton (Ed.), The amygdala (pp. 1–66). New York: Wiley-Liss.Google Scholar
  8. Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27, 77–87.PubMedCrossRefGoogle Scholar
  9. Amit, D. J. (1989). Modeling brain function. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Andersen, P., Morris, R. G. M., Amaral, D. G., Bliss, T. V. P., & O’Keefe, J. (2007). The hippocampus book. London: Oxford University Press.Google Scholar
  11. Barkas, L. J., Henderson, J. L., Hamilton, D. A., Redhead, E. S., & Gray, W. P. (2010). Selective temporal resections and spatial memory impairment: Cue dependent lateralization effects. Behavioural Brain Research, 208(2), 535–544. doi:10.1016/j.bbr.2009.12.035.PubMedCrossRefGoogle Scholar
  12. Battaglia, F. P., & Treves, A. (1998). Attractor neural networks storing multiple space representations: A model for hippocampal place fields. Physical Review E, 58, 7738–7753.CrossRefGoogle Scholar
  13. Bonelli, S. B., Powell, R. H., Yogarajah, M., Samson, R. S., Symms, M. R., Thompson, P. J., Duncan, J. S., et al. (2010). Imaging memory in temporal lobe epilepsy: Predicting the effects of temporal lobe resection. Brain, 133(Pt 4), 1186–1199. doi:10.1093/brain/awq006.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Brown, T. H., Ganong, A. H., Kairiss, E. W., Keenan, C. L., & Kelso, S. R. (Eds.). (1989). Long-term potentiation in two synaptic systems of the hippocampal brain slice. San Diego: Academic.Google Scholar
  15. Brown, T. H., Kairiss, E. W., & Keenan, C. L. (1990). Hebbian synapses: Biophysical mechanisms and algorithms. Annual Review of Neuroscience, 13, 475–511.PubMedCrossRefGoogle Scholar
  16. Brun, V. H., Otnass, M. K., Molden, S., Steffenach, H. A., Witter, M. P., Moser, M. B., & Moser, E. I. (2002). Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science, 296, 2243–2246.PubMedCrossRefGoogle Scholar
  17. Carmichael, S. T., & Price, J. L. (1995). Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. Journal of Comparative Neurology, 346, 403–434.CrossRefGoogle Scholar
  18. Cerasti, E., & Treves, A. (2010). How informative are spatial CA3 representations established by the dentate gyrus? PLoS Computational Biology, 6(4), e1000759.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Cerasti, E., & Treves, A. (2013). The spatial representations acquired in CA3 by self-organizing recurrent connections. Frontiers in Cellular Neuroscience, 7, 112. Google Scholar
  20. Cheng, S. (2013). The CRISP theory of hippocampal function in episodic memory. Frontiers in Neural Circuits, 7, 88.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Clelland, C. D., Choi, M., Romberg, C., Clemenson, G. D., Jr., Fragniere, A., Tyers, P., et al. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937), 210–213.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Daumas, S., Ceccom, J., Halley, H., Frances, B., & Lassalle, J. M. (2009). Activation of metabotropic glutamate receptor type 2/3 supports the involvement of the hippocampal mossy fiber pathway on contextual fear memory consolidation. Learning and Memory, 16(8), 504–507.PubMedCrossRefGoogle Scholar
  23. Day, M., Langston, R., & Morris, R. G. (2003). Glutamate-receptor-mediated encoding and retrieval of paired-associate learning. Nature, 424, 205–209.PubMedCrossRefGoogle Scholar
  24. de Araujo, I. E. T., Rolls, E. T., & Stringer, S. M. (2001). A view model which accounts for the spatial fields of hippocampal primate spatial view cells and rat place cells. Hippocampus, 11, 699–706.PubMedCrossRefGoogle Scholar
  25. Delatour, B., & Witter, M. P. (2002). Projections from the parahippocampal region to the prefrontal cortex in the rat: Evidence of multiple pathways. The European Journal of Neuroscience, 15, 1400–1407.PubMedCrossRefGoogle Scholar
  26. Dere, E., Easton, A., Nadel, L., & Huston, J. P. (Eds.). (2008). Handbook of episodic memory. Amsterdam: Elsevier.Google Scholar
  27. Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., & Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature, 425, 184–188.Google Scholar
  28. Fazeli, M. S., & Collingridge, G. L. (Eds.). (1996). Cortical plasticity: LTP and LTD. Oxford: Bios.Google Scholar
  29. Florian, C., & Roullet, P. (2004). Hippocampal CA3-region is crucial for acquisition and memory consolidation in Morris water maze task in mice. Behavioural Brain Research, 154, 365–374.PubMedCrossRefGoogle Scholar
  30. Franco, L., Rolls, E. T., Aggelopoulos, N. C., & Jerez, J. M. (2007). Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex. Biological Cybernetics, 96, 547–560.PubMedCrossRefGoogle Scholar
  31. Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., & Moser, M. B. (2004). Spatial representation in the entorhinal cortex. Science, 305, 1258–1264.PubMedCrossRefGoogle Scholar
  32. Georges-François, P., Rolls, E. T., & Robertson, R. G. (1999). Spatial view cells in the primate hippocampus: Allocentric view not head direction or eye position or place. Cerebral Cortex, 9, 197–212.PubMedCrossRefGoogle Scholar
  33. Gilbert, P. E., & Kesner, R. P. (2003). Localization of function within the dorsal hippocampus: The role of the CA3 subregion in paired-associate learning. Behavioral Neuroscience, 117, 1385–1394.PubMedCrossRefGoogle Scholar
  34. Gilbert, P. E., Kesner, R. P., & Lee, I. (2001). Dissociating hippocampal subregions: Double dissociation between dentate gyrus and CA1. Hippocampus, 11, 626–636.PubMedCrossRefGoogle Scholar
  35. Giocomo, L. M., & Hasselmo, M. E. (2007). Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating the relative influence of afferent input and excitatory feedback. Molecular Neurobiology, 36(2), 184–200.PubMedCrossRefGoogle Scholar
  36. Giocomo, L. M., Moser, M. B., & Moser, E. I. (2011). Computational models of grid cells. Neuron, 71(4), 589–603. doi:S0896-6273(11)00650-7[pii]10.1016/j.neuron.2011.07.023.PubMedCrossRefGoogle Scholar
  37. Gold, A. E., & Kesner, R. P. (2005). The role of the CA3 subregion of the dorsal hippocampus in spatial pattern completion in the rat. Hippocampus, 15, 808–814.PubMedCrossRefGoogle Scholar
  38. Goodrich-Hunsaker, N. J., Hunsaker, M. R., & Kesner, R. P. (2008). The interactions and dissociations of the dorsal hippocampus subregions: How the dentate gyrus, CA3, and CA1 process spatial information. Behavioral Neuroscience, 122(1), 16–26.PubMedCrossRefGoogle Scholar
  39. Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806.PubMedCrossRefGoogle Scholar
  40. Hasselmo, M. E., Schnell, E., & Barkai, E. (1995). Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. The Journal of Neurosciences, 15, 5249–5262.Google Scholar
  41. Henze, D. A., Wittner, L., & Buzsaki, G. (2002). Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nature Neuroscience, 5(8), 790–795.PubMedGoogle Scholar
  42. Hertz, J., Krogh, A., & Palmer, R. G. (1991). An introduction to the theory of neural computation. Wokingham: Addison-Wesley.Google Scholar
  43. Hoge, J., & Kesner, R. P. (2007). Role of CA3 and CA1 subregions of the dorsal hippocampus on temporal processing of objects. Neurobiology of Learning and Memory, 88(2), 225–231.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Science U S A, 79, 2554–2558.CrossRefGoogle Scholar
  45. Hunsaker, M. R., & Kesner, R. P. (2008). Evaluating the differential roles of the dorsal dentate gyrus, dorsal CA3, and dorsal CA1 during a temporal ordering for spatial locations task. Hippocampus, 18(9), 955–964.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Hunsaker, M. R., & Kesner, R. P. (2013). The operation of pattern separation and pattern completion processes associated with different attributes or domains of memory. Neuroscience and Biobehavioral Reviews, 37(1), 36–58. doi:10.1016/j.neubiorev.2012.09.014.PubMedCrossRefGoogle Scholar
  47. Ishizuka, N., Weber, J., & Amaral, D. G. (1990). Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. Journal of Comparative Neurology, 295, 580–623.PubMedCrossRefGoogle Scholar
  48. Jackson, M. B. (2013). Recall of Spatial Patterns Stored in a Hippocampal Slice By Long-Term Potentiation. Journal of Neurophysiology. doi:10.1152/jn.00533.2013.Google Scholar
  49. Jezek, K., Henriksen, E. J., Treves, A., Moser, E. I., & Moser, M.-B. (2011). Theta-paced flickering between place-cell maps in the hippocampus. Nature, 278, 246–249.CrossRefGoogle Scholar
  50. Jung, M. W., & McNaughton, B. L. (1993). Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus, 3, 165–182.PubMedCrossRefGoogle Scholar
  51. Kesner, R. P. (2007). Behavioral functions of the CA3 subregion of the hippocampus. Learning and Memory, 14(11), 771–781. doi:10.1101/lm.688207.PubMedCrossRefGoogle Scholar
  52. Kesner, R. P. (2013). An analysis of the dentate gyrus function. Behavioural Brain Research, 254, 1–7. doi:10.1016/j.bbr.2013.01.012.PubMedCrossRefGoogle Scholar
  53. Kesner, R. P., & Rolls, E. T. (2001). Role of long term synaptic modification in short term memory. Hippocampus, 11, 240–250.PubMedCrossRefGoogle Scholar
  54. Kesner, R. P., & Rolls, E. T. (2015). A computational theory of hippocampal function, and tests of the theory: new developments. Neuroscience and Biobehavioral Reviews 48, 92–147.Google Scholar
  55. Kesner, R. P., Gilbert, P. E., & Barua, L. A. (2002). The role of the hippocampus in memory for the temporal order of a sequence of odors. Behavioral Neuroscience, 116, 286–290.PubMedCrossRefGoogle Scholar
  56. Kesner, R. P., Hunsaker, M. R., & Warthen, M. W. (2008). The CA3 subregion of the hippocampus is critical for episodic memory processing by means of relational encoding in rats. Behavioral Neuroscience, 122(6), 1217–1225.PubMedCrossRefGoogle Scholar
  57. Kesner, R. P., Morris, A. M., & Weeden, C. S. S. (2012). Spatial, temporal, and associative behavioral functions associated with different subregions of the hippocampus. In T. R. Zentall & E. A. Wasserman (Eds.), Oxford handbook of comparative cognition (pp. 322–346). Oxford: Oxford University Press.Google Scholar
  58. Killian, N. J., Jutras, M. J., & Buffalo, E. A. (2012). A map of visual space in the primate entorhinal cortex. Nature, 491(7426), 761–764. doi:10.1038/nature11587.PubMedCentralPubMedGoogle Scholar
  59. Kohonen, T. (1977). Associative memory: A system theoretical approach. New York: Springer.CrossRefGoogle Scholar
  60. Kohonen, T. (1984). Self-organization and associative memory. Berlin: Springer-Verlag.Google Scholar
  61. Kohonen, T., Oja, E., & Lehtio, P. (1981). Storage and processing of information in distributed memory systems. In G. E. Hinton & J. A. Anderson (Eds.), Parallel models of associative memory (pp. 129–167). Hillsdale: Lawrence Erlbaum.Google Scholar
  62. Kondo, H., Lavenex, P., & Amaral, D. G. (2009). Intrinsic connections of the macaque monkey hippocampal formation: II. CA3 connections. Journal of Comparative Neurology, 515(3), 349–377.PubMedCentralPubMedGoogle Scholar
  63. Kropff, E., & Treves, A. (2008). The emergence of grid cells: Intelligent design or just adaptation? Hippocampus, 18(12), 1256–1269.PubMedCrossRefGoogle Scholar
  64. Lassalle, J. M., Bataille, T., & Halley, H. (2000). Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task. Neurobiology of Learning and Memory, 73, 243–257.PubMedCrossRefGoogle Scholar
  65. Lavenex, P., & Amaral, D. G. (2000). Hippocampal-neocortical interaction: A hierarchy of associativity. Hippocampus, 10, 420–430.PubMedCrossRefGoogle Scholar
  66. Lavenex, P., Suzuki, W. A., & Amaral, D. G. (2004). Perirhinal and parahippocampal cortices of the macaque monkey: Intrinsic projections and interconnections. Journal of Comparative Neurology, 472, 371–394.PubMedCrossRefGoogle Scholar
  67. Lee, I., & Kesner, R. P. (2004). Encoding versus retrieval of spatial memory: Double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus. Hippocampus, 14, 66–76.PubMedCrossRefGoogle Scholar
  68. Leutgeb, S., & Leutgeb, J. K. (2007). Pattern separation, pattern completion, and new neuronal codes within a continuous CA3 map. Learning and Memory, 14(11), 745–757.PubMedCrossRefGoogle Scholar
  69. Leutgeb, J. K., Leutgeb, S., Moser, M. B., & Moser, E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315(5814), 961–966.PubMedCrossRefGoogle Scholar
  70. Levy, W. B. (1989). A computational approach to hippocampal function. In R. D. Hawkins & G. H. Bower (Eds.), Computational models of learning in simple neural systems (pp. 243–305). San Diego: Academic.CrossRefGoogle Scholar
  71. Lynch, M. A. (2004). Long-term potentiation and memory. Psychological Review, 84, 87–136.Google Scholar
  72. Marr, D. (1971). Simple memory: A theory for archicortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 262, 23–81.PubMedCrossRefGoogle Scholar
  73. McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.PubMedCrossRefGoogle Scholar
  74. McHugh, T. J., Jones, M. W., Quinn, J. J., Balthasar, N., Coppari, R., Elmquist, J. K., et al. (2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science, 317(5834), 94–99.PubMedCrossRefGoogle Scholar
  75. McNaughton, B. L. (1991). Associative pattern completion in hippocampal circuits: New evidence and new questions. Brain Research Review, 16, 193–220.CrossRefGoogle Scholar
  76. McNaughton, B. L., & Morris, R. G. M. (1987). Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in Neurosciences, 10(10), 408–415.CrossRefGoogle Scholar
  77. McNaughton, B. L., & Nadel, L. (1990). Hebb-Marr networks and the neurobiological representation of action in space. In M. A. Gluck & D. E. Rumelhart (Eds.), Neuroscience and connectionist theory (pp. 1–64). Hillsdale: Erlbaum.Google Scholar
  78. McNaughton, B. L., Barnes, C. A., & O’Keefe, J. (1983). The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Experimental Brain Research, 52, 41–49.PubMedCrossRefGoogle Scholar
  79. McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., & Moser, M.-B. (2006). Path integration and the neural basis of the ‘cognitive map.’ Nature Reviews Neuroscience, 7, 663–678.PubMedCrossRefGoogle Scholar
  80. Morris, R. G. M. (1989). Does synaptic plasticity play a role in information storage in the vertebrate brain? In R. G. M. Morris (Ed.), Parallel distributed processing: Implications for psychology and neurobiology (pp. 248–285). Oxford: Oxford University Press.Google Scholar
  81. Morris, R. G. (2003). Long-term potentiation and memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 643–647.PubMedCentralPubMedCrossRefGoogle Scholar
  82. Morris, R. G., Moser, E. I., Riedel, G., Martin, S. J., Sandin, J., Day, M., & O’Carroll, C. (2003). Elements of a neurobiological theory of the hippocampus: The role of activity-dependent synaptic plasticity in memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 773–786.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Moscovitch, M., Rosenbaum, R. S., Gilboa, A., Addis, D. R., Westmacott, R., Grady, C., et al. (2005). Functional neuroanatomy of remote episodic, semantic and spatial memory: A unified account based on multiple trace theory. Journal of Anatomy, 207, 35–66.PubMedCentralPubMedCrossRefGoogle Scholar
  84. Naber, P. A., Lopes da Silva, F. H., & Witter, M. P. (2001). Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum. Hippocampus, 11, 99–104.PubMedCrossRefGoogle Scholar
  85. Nakashiba, T., Cushman, J. D., Pelkey, K. A., Renaudineau, S., Buhl, D. L., McHugh, T. J., et al. (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 149(1), 188–201. doi:S0092-8674(12)00157-2[pii]10.1016/j.cell.2012.01.046.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Nakazawa, K., Quirk, M. C., Chitwood, R. A., Watanabe, M., Yeckel, M. F., Sun, L. D., et al. (2002). Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science, 297, 211–218.PubMedCentralPubMedCrossRefGoogle Scholar
  87. Nakazawa, K., Sun, L. D., Quirk, M. C., Rondi-Reig, L., Wilson, M. A., & Tonegawa, S. (2003). Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron, 38, 305–315.PubMedCrossRefGoogle Scholar
  88. Nakazawa, K., McHugh, T. J., Wilson, M. A., & Tonegawa, S. (2004). NMDA receptors, place cells and hippocampal spatial memory. Nature Reviews Neuroscience, 5, 361–372.PubMedCrossRefGoogle Scholar
  89. O’Keefe, J. (1979). A review of the hippocampal place cells. Progress in Neurobiology, 13, 419–439.PubMedCrossRefGoogle Scholar
  90. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.Google Scholar
  91. O’ Keefe, J., & Speakman, A. (1987). Single unit activity in the rat hippocampus during a spatial memory task. Experimental Brain Research, 68, 1–27.CrossRefGoogle Scholar
  92. Pitkanen, A., Kelly, J. L., & Amaral, D. G. (2002). Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey. Hippocampus, 12, 186–205.PubMedCrossRefGoogle Scholar
  93. Rajji, T., Chapman, D., Eichenbaum, H., & Greene, R. (2006). The role of CA3 hippocampal NMDA receptors in paired associate learning. The Journal of Neurosciences, 26(3), 908–915.Google Scholar
  94. Robertson, R. G., Rolls, E. T., & Georges-François, P. (1998). Spatial view cells in the primate hippocampus: Effects of removal of view details. Journal of Neurophysiology, 79, 1145–1156.PubMedGoogle Scholar
  95. Rolls, E. T. (1987). Information representation, processing and storage in the brain: Analysis at the single neuron level. In J.-P. Changeux & M. Konishi (Eds.), The neural and molecular bases of learning (pp. 503–540). Chichester: Wiley.Google Scholar
  96. Rolls, E. T. (1989a). Functions of neuronal networks in the hippocampus and cerebral cortex in memory. In R. M. J. Cotterill (Ed.), Models of brain function (pp. 15–33). Cambridge: Cambridge University Press.Google Scholar
  97. Rolls, E. T. (1989b). Functions of neuronal networks in the hippocampus and neocortex in memory. In J. H. Byrne & W. O. Berry (Eds.), Neural models of plasticity: Experimental and theoretical approaches (pp. 240–265). San Diego: Academic.CrossRefGoogle Scholar
  98. Rolls, E. T. (1989c). The representation and storage of information in neuronal networks in the primate cerebral cortex and hippocampus. In R. Durbin, C. Miall, & G. Mitchison (Eds.), The computing neuron (pp. 125–159). Wokingham: Addison-Wesley.Google Scholar
  99. Rolls, E. T. (1990a). Functions of the primate hippocampus in spatial processing and memory. In D. S. Olton & R. P. Kesner (Eds.), Neurobiology of comparative cognition (pp. 339–362). Hillsdale: L. Erlbaum.Google Scholar
  100. Rolls, E. T. (1990b). Theoretical and neurophysiological analysis of the functions of the primate hippocampus in memory. Cold Spring Harbor Symposia in Quantitative Biology, 55, 995–1006.CrossRefGoogle Scholar
  101. Rolls, E. T. (1991). Functions of the primate hippocampus in spatial and non-spatial memory. Hippocampus, 1, 258–261.PubMedCrossRefGoogle Scholar
  102. Rolls, E. T. (1995). A model of the operation of the hippocampus and entorhinal cortex in memory. International Journal of Neural Systems, 6, 51–70.Google Scholar
  103. Rolls, E. T. (1996a). Roles of long term potentiation and long term depression in neuronal network operations in the brain. In M. S. Fazeli & G. L. Collingridge (Eds.), Cortical plasticity (pp. 223–250). Oxford: Bios.Google Scholar
  104. Rolls, E. T. (1996b). A theory of hippocampal function in memory. Hippocampus, 6, 601–620.PubMedCrossRefGoogle Scholar
  105. Rolls, E. T. (1999). Spatial view cells and the representation of place in the primate hippocampus. Hippocampus, 9, 467–480.PubMedCrossRefGoogle Scholar
  106. Rolls, E. T. (2008). Memory, attention, and decision-making: A unifying computational neuroscience approach. Oxford: Oxford University Press.Google Scholar
  107. Rolls, E. T. (2010a). Attractor networks. WIREs Cognitive Science, 1i, 119–134.PubMedCrossRefGoogle Scholar
  108. Rolls, E. T. (2010b). A computational theory of episodic memory formation in the hippocampus. Behavioural Brain Research, 205, 180–196.CrossRefGoogle Scholar
  109. Rolls, E. T. (2012a). Advantages of dilution in the connectivity of attractor networks in the brain. Biologically Inspired Cognitive Architectures, 1, 44–54. doi: 10.1016/j.bica.2012.03.003.CrossRefGoogle Scholar
  110. Rolls, E. T. (2012b). Invariant visual object and face recognition: Neural and computational bases, and a model, VisNet. Frontiers in Computational Neuroscience, 6, 35, 1–70.Google Scholar
  111. Rolls, E. T. (2013). A quantitative theory of the functions of the hippocampal CA3 network in memory. Frontiers in Cellular Neuroscience, 7, 98. doi:10.3389/fncel.2013.00098.PubMedCentralPubMedCrossRefGoogle Scholar
  112. Rolls, E. T. (2014). Emotion and decision-making explained. Oxford: Oxford University Press.Google Scholar
  113. Rolls, E. T. (2016). Cerebral cortex: Principles of operation. Oxford: Oxford University Press.Google Scholar
  114. Rolls, E. T., & Deco, G. (2002). Computational neuroscience of vision. Oxford: Oxford University Press.Google Scholar
  115. Rolls, E. T., & Deco, G. (2010). The noisy brain: Stochastic dynamics as a principle of brain function. Oxford: Oxford University Press.CrossRefGoogle Scholar
  116. Rolls, E. T., & Kesner, R. P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. Progress in Neurobiology, 79, 1–48.PubMedCrossRefGoogle Scholar
  117. Rolls, E. T., & Stringer, S. M. (2000). On the design of neural networks in the brain by genetic evolution. Progress in Neurobiology, 61, 557–579.PubMedCrossRefGoogle Scholar
  118. Rolls, E. T., & Stringer, S. M. (2005). Spatial view cells in the hippocampus, and their idiothetic update based on place and head direction. Neural Networks, 18, 1229–1241.PubMedCrossRefGoogle Scholar
  119. Rolls, E. T., & Treves, A. (1990). The relative advantages of sparse versus distributed encoding for associative neuronal networks in the brain. Network, 1, 407–421.CrossRefGoogle Scholar
  120. Rolls, E. T., & Treves, A. (1998). Neural networks and brain function. Oxford: Oxford University Press.Google Scholar
  121. Rolls, E. T., & Treves, A. (2011). The neuronal encoding of information in the brain. Progress in Neurobiology, 95, 448–490.PubMedCrossRefGoogle Scholar
  122. Rolls, E. T., & Webb, T. J. (2012). Cortical attractor network dynamics with diluted connectivity. Brain Research, 1434, 212–225.PubMedCrossRefGoogle Scholar
  123. Rolls, E. T., & Xiang, J.-Z. (2005). Reward-spatial view representations and learning in the hippocampus. Journal of Neuroscience, 25, 6167–6174.PubMedCrossRefGoogle Scholar
  124. Rolls, E. T., & Xiang, J.-Z. (2006). Spatial view cells in the primate hippocampus, and memory recall. Reviews in the Neurosciences, 17, 175–200.PubMedCrossRefGoogle Scholar
  125. Rolls, E. T., Robertson, R. G., & Georges-François, P. (1997a). Spatial view cells in the primate hippocampus. European Journal of Neuroscience, 9, 1789–1794.PubMedCrossRefGoogle Scholar
  126. Rolls, E. T., Treves, A., Foster, D., & Perez-Vicente, C. (1997b). Simulation studies of the CA3 hippocampal subfield modelled as an attractor neural network. Neural Networks, 10, 1559–1569.CrossRefGoogle Scholar
  127. Rolls, E. T., Treves, A., Robertson, R. G., Georges-François, P., & Panzeri, S. (1998). Information about spatial view in an ensemble of primate hippocampal cells. Journal of Neurophysiology, 79, 1797–1813.PubMedGoogle Scholar
  128. Rolls, E. T., Stringer, S. M., & Trappenberg, T. P. (2002). A unified model of spatial and episodic memory. Proceedings of the Royal Society of London B, 269, 1087–1093.Google Scholar
  129. Rolls, E. T., Xiang, J.-Z., & Franco, L. (2005). Object, space and object-space representations in the primate hippocampus. Journal of Neurophysiology, 94, 833–844.PubMedCrossRefGoogle Scholar
  130. Rolls, E. T., Stringer, S. M., & Elliot, T. (2006). Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Network: Computation in Neural Systems, 17, 447–465.CrossRefGoogle Scholar
  131. Rolls, E. T., Dempere-Marco, L., & Deco, G. (2013). Holding multiple items in short term memory: A neural mechanism. PLoS One, 8, e61078.PubMedCentralPubMedCrossRefGoogle Scholar
  132. Rondi-Reig, L., Libbey, M., Eichenbaum, H., & Tonegawa, S. (2001). CA1-specific N-methyl-D-aspartate receptor knockout mice are deficient in solving a nonspatial transverse patterning task. Proceedings of the National Academy of Sciences of the United States of America, 98, 3543–3548.Google Scholar
  133. Samsonovich, A., & McNaughton, B. L. (1997). Path integration and cognitive mapping in a continuous attractor neural network model. Journal of Neuroscience, 17, 5900–5920.PubMedGoogle Scholar
  134. Schultz, S., & Rolls, E. T. (1999). Analysis of information transmission in the Schaffer collaterals. Hippocampus, 9, 582–598.PubMedCrossRefGoogle Scholar
  135. Schultz, S., Panzeri, S., Rolls, E. T., & Treves, A. (2000). Quantitive model analysis of a Schaffer collateral model. In P. Hancock, P. Foldiak, & R. Baddeley (Eds.), Information theory and the brain (pp. 257–272,Chap. 14). Cambridge: Cambridge University Press.Google Scholar
  136. Schwindel, C. D., & McNaughton, B. L. (2011). Hippocampal-cortical interactions and the dynamics of memory trace reactivation. Progress in Brain Research, 193, 163–177. doi:B978-0-444-53839-0.00011-9[pii]10.1016/B978-0-444-53839-0.00011-9.PubMedCrossRefGoogle Scholar
  137. Sidhu, M. K., Stretton, J., Winston, G. P., Bonelli, S., Centeno, M., Vollmar, C., et al. (2013). A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy. Brain, 136, 1868–1888. doi:10.1093/brain/awt099.PubMedCentralPubMedCrossRefGoogle Scholar
  138. Simmen, M. W., Treves, A., & Rolls, E. T. (1996). Pattern retrieval in threshold-linear associative nets. Network, 7, 109–122.CrossRefGoogle Scholar
  139. Stefanacci, L., Suzuki, W. A., & Amaral, D. G. (1996). Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. Journal of Comparative Neurology, 375, 552–582.PubMedCrossRefGoogle Scholar
  140. Stella, F., Cerasti, E., & Treves, A. (2013). Unveiling the metric structure of internal representations of space. Frontiers in Neural Circuits, 7, 81. doi:10.3389/fncir.2013.00081.PubMedCentralPubMedCrossRefGoogle Scholar
  141. Storm-Mathiesen, J., Zimmer, J., & Ottersen, O. P. (Eds.). (1990). Understanding the brain through the hippocampus (Vol. 83). Oxford: Elsevier.Google Scholar
  142. Stringer, S. M., & Rolls, E. T. (2002). Invariant object recognition in the visual system with novel views of 3D objects. Neural Computation, 14, 2585–2596.PubMedCrossRefGoogle Scholar
  143. Stringer, S. M., & Rolls, E. T. (2006). Self-organizing path integration using a linked continuous attractor and competitive network: Path integration of head direction. Network: Computation in Neural Systems, 17, 419–445.CrossRefGoogle Scholar
  144. Stringer, S. M., Rolls, E. T., Trappenberg, T. P., & Araujo, I. E. T. (2002a). Self-organizing continuous attractor networks and path integration. Two-dimensional models of place cells. Network: Computation in Neural Systems, 13, 429–446.CrossRefGoogle Scholar
  145. Stringer, S. M., Trappenberg, T. P., Rolls, E. T., & Araujo, I. E. T. (2002b). Self-organizing continuous attractor networks and path integration: One-dimensional models of head direction cells. Network: Computation in Neural Systems, 13, 217–242.CrossRefGoogle Scholar
  146. Stringer, S. M., Rolls, E. T., & Trappenberg, T. P. (2004). Self-organising continuous attractor networks with multiple activity packets, and the representation of space. Neural Networks, 17, 5–27.PubMedCrossRefGoogle Scholar
  147. Stringer, S. M., Rolls, E. T., & Trappenberg, T. P. (2005). Self-organizing continuous attractor network models of hippocampal spatial view cells. Neurobiology of Learning and Memory, 83, 79–92.PubMedCrossRefGoogle Scholar
  148. Suzuki, W. A., & Amaral, D. G. (1994a). Perirhinal and parahippocampal cortices of the macaque monkey—cortical afferents. Journal of Comparative Neurology, 350(4), 497–533.PubMedCrossRefGoogle Scholar
  149. Suzuki, W. A., & Amaral, D. G. (1994b). Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. Journal of Neuroscience, 14, 1856–1877.PubMedGoogle Scholar
  150. Taylor, J. G. (1999). Neural “bubble” dynamics in two dimensions: Foundations. Biological Cybernetics, 80, 393–409.CrossRefGoogle Scholar
  151. Tonegawa, S., Nakazawa, K., & Wilson, M. A. (2003). Genetic neuroscience of mammalian learning and memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 787–795.PubMedCentralPubMedCrossRefGoogle Scholar
  152. Treves, A. (1990). Graded-response neurons and information encodings in autoassociative memories. Physical Review A, 42, 2418–2430.PubMedCrossRefGoogle Scholar
  153. Treves, A. (1991). Dilution and sparse coding in threshold-linear nets. Journal of Physics A, 24, 327–335.CrossRefGoogle Scholar
  154. Treves, A. (1995). Quantitative estimate of the information relayed by Schaffer collaterals. Journal of Computational Neuroscience, 2, 259–272.PubMedCrossRefGoogle Scholar
  155. Treves, A., & Rolls, E. T. (1991). What determines the capacity of autoassociative memories in the brain? Network, 2, 371–397.CrossRefGoogle Scholar
  156. Treves, A., & Rolls, E. T. (1992). Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus, 2, 189–199.PubMedCrossRefGoogle Scholar
  157. Treves, A., & Rolls, E. T. (1994). A computational analysis of the role of the hippocampus in memory. Hippocampus, 4, 374–391.PubMedCrossRefGoogle Scholar
  158. van Haeften, T., Baks-te-Bulte, L., Goede, P. H., Wouterlood, F. G., & Witter, M. P. (2003). Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat. Hippocampus, 13, 943–952.PubMedCrossRefGoogle Scholar
  159. Van Hoesen, G. W. (1982). The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends in Neuroscience, 5, 345–350.CrossRefGoogle Scholar
  160. Walters, D. M., Stringer, S. M., & Rolls, E. T. (2013). Path integration of head direction: Updating a packet of neural activity at the correct speed using axonal conduction delays. PLoS One, 8, e58330.PubMedCentralPubMedCrossRefGoogle Scholar
  161. Wang, S. H., & Morris, R. G. (2010). Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annual Review of Psychology, 61, 49–79, C41–44.PubMedCrossRefGoogle Scholar
  162. Webb, T., Rolls, E. T., Deco, G., & Feng, J. (2011). Noise in attractor networks in the brain produced by graded firing rate representations. PLoS One, 6, e23630.PubMedCentralPubMedCrossRefGoogle Scholar
  163. Wills, T. J., Lever, C., Cacucci, F., Burgess, N., & O’Keefe, J. (2005). Attractor dynamics in the hippocampal representation of the local environment. Science, 308, 873–876.PubMedCentralPubMedCrossRefGoogle Scholar
  164. Witter, M. P. (1993). Organization of the entorhinal-hippocampal system: A review of current anatomical data. Hippocampus, 3, 33–44.PubMedGoogle Scholar
  165. Witter, M. P. (2007). Intrinsic and extrinsic wiring of CA3: Indications for connectional heterogeneity. Learning and Memory, 14(11), 705–713.PubMedCrossRefGoogle Scholar
  166. Witter, M. P., Naber, P. A., van Haeften, T., Machielsen, W. C., Rombouts, S. A., Barkhof, F., et al. (2000a). Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus, 10, 398–410.PubMedCrossRefGoogle Scholar
  167. Witter, M. P., Wouterlood, F. G., Naber, P. A., & Van Haeften, T. (2000b). Anatomical organization of the parahippocampal-hippocampal network. Annals of the New York Academy of Sciences, 911, 1–24.PubMedCrossRefGoogle Scholar
  168. Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory. Journal of Neuroscience, 16, 2112–2126.PubMedGoogle Scholar
  169. Zilli, E. A. (2012). Models of grid cell spatial firing published 2005–2011. Front Neural Circuits, 6, 16. doi:10.3389/fncir.2012.00016.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer Science and Oxford Centre for Computational NeuroscienceUniversity of WarwickCoventryUK

Personalised recommendations