Space, Time, and the Hippocampus

  • Lara M. Rangel
  • Laleh K. Quinn
  • Andrea A. ChibaEmail author


Kesner’s attribute model of memory endows the hippocampus with the ability to code both time and space. These two parameters are intertwined in their very essence and lend structure to the ongoing autobiographical record of an organism. Kesner’s addition of time and temporal processing to the notion that the hippocampus supports a spatial cognitive map, fused hippocampal theory into a coherent framework for human and non-human animals. The mechanism by which the hippocampus and its associated circuitry supports memory for time is a fertile area of research that was seeded by Kesner and his contemporaries. The inherent physiological properties of the hippocampus support Kesner’s original hypothesis, emphasizing that temporal and spatial inputs converge in the hippocampus. The temporal scale of this convergence is evident from patterns of neuronal firing to enduring memories.


Temporal order Episodic memory Place cells Dentate gyrus Neurogenesis Neurophysiology 



Recollections of the Kesner Lab

My (Chiba’s) memories of Ray Kesner’s lab in the context of graduate school surround the time of exciting theoretical advances, pushing the attribute model from a static to an active processing model. Daily candid exchanges were inspired by Ray’s openness to creatively and rigorously testing, rather than simply supporting his theories. Ray’s approach provided a platform for learning across several different labs working on similar questions. His genius for behavioral design and effervescence was contagious and as such all of us from that era inherited a portion of his passion and made his science part of our own. To our post-docs and students, there was nothing more inspiring than their first meal with Ray who is particularly facile at using restaurant condiments to represent all physical aspects of an experiment. The prize of the meal was the napkin covered with newly designed experiments to test the question of the evening. Each of us aspired to take at least some small aspect of Ray back to the lab. To Ray, we owe our intrinsic satisfaction from beautiful science; this is what makes a scientist for life and across many venues. What rich and perplexing lives he has given us. Thank you, Ray!

I (Chiba) also wish to acknowledge the late Dr. William H. Saufley II, a student of Underwood’s, who instilled my early desire to pursue science and directed me towards Ray’s Chapter in Learning and Memory: A Biological View (Eds. J L Martinez and R P Kesner 1986). This eye-catching book illuminated the path to Ray’s lab.


  1. Aimone, J. B., Wiles, J., & Gage, F. H. (2006). Potential role for adult neurogenesis in the encoding of time in new memories. Nature Neuroscience, 9(6), 723–727. doi:nn1707 [pii] 10.1038/nn1707.CrossRefPubMedGoogle Scholar
  2. Aimone, J. B., Wiles, J., & Gage, F. H. (2009). Computational influence of adult neurogenesis on memory encoding. Neuron, 61(2), 187–202. doi:S0896-6273(08)01019-2 [pii] 10.1016/j.neuron.2008.11.026.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Aimone, J. B., Deng, W., & Gage, F. H. (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70(4), 589–596. doi: 10.1016/j.neuron.2011.05.010.Google Scholar
  4. Allen, T. A., Morris, A. M., Mattfeld, A. T., Stark, C. E. L., & Fortin, N. J. (2014). A Sequence of events model of episodic memory shows parallels in rats and humans. Hippocampus, 24, 1178–1188 doi:10.1002/hipo.22301.CrossRefPubMedGoogle Scholar
  5. Aristotle, & Barnes, J. (1984) The complete works of Aristotle: The revised Oxford translation (Bollingen Series LXXI-2) (Vol. 2). New Jersey: Princeton University Press.Google Scholar
  6. Bostock, E., Muller, R. U., & Kubie, J. L. (1991). Experience-dependent modifications of hippocampal place cell firing. Hippocampus, 1(2), 193–205. doi:10.1002/hipo.450010207.CrossRefPubMedGoogle Scholar
  7. Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron 35(4), 625–641.Google Scholar
  8. Chiba, A. A., Kesner, R. P., & Jackson, P. A. (2002). Two forms of spatial memory: A double dissociation between the parietal cortex and the hippocampus in the rat. Behavioral Neuroscience, 116(5), 874–883.CrossRefPubMedGoogle Scholar
  9. Cohen, N. J., Poldrack, R. A., & Eichenbaum, H. (1997). Memory for items and memory for relations in the procedural/declarative memory framework. Memory (Hove, England), 5(1–2), 131–178. doi:10.1080/741941149.CrossRefGoogle Scholar
  10. Davidson, T. J., Kloosterman, F., & Wilson, M. A. (2009). Hippocampal replay of extended experience. Neuron, 63(4), 497–507. doi:10.1016/j.neuron.2009.07.027.PubMedCentralCrossRefPubMedGoogle Scholar
  11. DeCoteau, W. E., & Kesner, R. P. (2000). A double dissociation between the rat hippocampus and medial caudoputamen in processing two forms of knowledge. Behavioral Neuroscience, 114(6), 1096–1108.CrossRefPubMedGoogle Scholar
  12. Deng, W., Mayford, M., & Gage, F. H. (2013). Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife, 2, e00312. doi:10.7554/eLife.00312PubMedCentralCrossRefPubMedGoogle Scholar
  13. de Pontes, J. C. A., Batista, A. M., Viana, R. L., & Lopes, S. R. (2005). Short-term memories with a stochastic perturbation. Chaos, Solitons & Fractals 23(5), 1689–1694.Google Scholar
  14. DiMattia, B. D., & Kesner, R. P. (1988). Spatial cognitive maps: Differential role of parietal cortex and hippocampal formation. Behavioral Neuroscience, 102(4), 471–480.CrossRefPubMedGoogle Scholar
  15. Dragoi, G., & Buzsáki, G. (2006). Temporal encoding of place sequences by hippocampal cell assemblies. Neuron, 50(1), 145–157. doi:10.1016/j.neuron.2006.02.023.CrossRefPubMedGoogle Scholar
  16. Esposito, M. S., Piatti, V. C., Laplagne, D. A., Morgenstern, N. A., Ferrari, C. C., Pitossi, F. J., & Schinder, A. F. (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. The Journal of Neuroscience, 25(44), 10074–10086. doi:25/44/10074 [pii] 10.1523/JNEUROSCI.3114-05.2005.CrossRefPubMedGoogle Scholar
  17. Frank, L. M., Brown, E. N., & Wilson, M. (2000). Trajectory encoding in the hippocampus and entorhinal cortex. Neuron, 27(1), 169–178.CrossRefPubMedGoogle Scholar
  18. Frank, L. M., Brown, E. N., & Stanley, G. B. (2006). Hippocampal and cortical place cell plasticity: Implications for episodic memory. Hippocampus, 16(9), 775–784. doi:10.1002/hipo.20200.CrossRefPubMedGoogle Scholar
  19. Gupta, A. S., van der Meer, M. A. A., Touretzky, D. S., & Redish, A. D. (2010). Hippocampal replay is not a simple function of experience. Neuron, 65(5), 695–705. doi:10.1016/j.neuron.2010.01.034.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. Journal of Mathematical Psychology, 46(3), 269–299. doi:10.1006/jmps.2001.1388.CrossRefGoogle Scholar
  21. Howard, M. W., Fotedar, M. S., Datey, A. V, & Hasselmo, M. E. (2005). The temporal context model in spatial navigation and relational learning: Toward a common explanation of medial temporal lobe function across domains. Psychological Review, 112(1), 75–116. doi:10.1037/0033-295X.112.1.75.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Jackson-Smith, P., Kesner, R. P., & Chiba, A. A. (1993). Continuous recognition of spatial and nonspatial stimuli in hippocampal-lesioned rats. Behavioral and Neural Biology, 59(2), 107–119.CrossRefPubMedGoogle Scholar
  23. Jacobson, T. K., Gruenbaum, B. F., & Markus, E. J. (2011). Extensive training and hippocampus or striatum lesions: Effect on place and response strategies. Physiology & Behavior, 105(3), 645–652. doi:10.1016/j.physbeh.2011.09.027.CrossRefGoogle Scholar
  24. Jadhav, S. P., Kemere, C., German, P. W., & Frank, L. M. (2012). Awake hippocampal sharp-wave ripples support spatial memory. Science (New York, N.Y.), 336(6087), 1454–1458. doi:10.1126/science.1217230.CrossRefGoogle Scholar
  25. Kametani, H., & Kesner, R. P. (1989). Retrospective and prospective coding of information: Dissociation of parietal cortex and hippocampal formation. Behavioral Neuroscience, 103, 84–89.CrossRefPubMedGoogle Scholar
  26. Kentros, C., Hargreaves, E., Hawkins, R. D., Kandel, E. R., Shapiro, M., & Muller, R. V. (1998). Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science (New York, N.Y.), 280(5372), 2121–2126.CrossRefGoogle Scholar
  27. Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R. D., & Kandel, E. R. (2004). Increased attention to spatial context increases both place field stability and spatial memory. Neuron, 42(2), 283–295.CrossRefPubMedGoogle Scholar
  28. Kesner, R. P. (1980). An attribute analysis of memory: The role of the hippocampus. Physiology Psychology, 8, 189–197.CrossRefGoogle Scholar
  29. Kesner, R. P. (1990). New approaches to the study of comparative cognition. NIDA Research Monograph, 97, 22–36 ( Scholar
  30. Kesner, R. P. (2013). A process analysis of the CA3 subregion of the hippocampus. Frontiers in Cellular Neuroscience, 7, 78. doi:10.3389/fncel.2013.00078.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Kesner, R. P., & Novak, J. (1982). Serial position curve in rats: Role of the dorsal hippocampus. Science, 218, 173–174.CrossRefPubMedGoogle Scholar
  32. Kesner, R. P., & Rolls, E. T. (2001). Role of long-term synaptic modification in short-term memory. Hippocampus, 11(3), 240–250. doi:10.1002/hipo.1040.CrossRefPubMedGoogle Scholar
  33. Kesner, R. P., Adelstein, T. B., & Crutcher, K. A. (1989). Equivalent spatial location memory deficits in rats with medial septum or hippocampal formation lesions and patients with dementia of the Alzheimer’s type. Brain and Cognition, 9(2), 289–300.CrossRefPubMedGoogle Scholar
  34. Kesner, R. P., Hui, X., Sommer, T., Wright, C., Barrera, V. R., Fanselow, M. S. (2014). The role of postnatal neurogenesis in supporting remote memory and spatial metric processing. Hippocampus, 24, 1663–1671. doi:10.1002/hipo.22346.CrossRefPubMedGoogle Scholar
  35. Kjelstrup, K. B., Solstad, T., Brun, V. H., Hafting, T., Leutgeb, S., Witter, M. P., et al. (2008). Finite scale of spatial representation in the hippocampus. Science, 321(5885), 140–143. doi:321/5885/140 [pii] 10.1126/science.1157086.CrossRefPubMedGoogle Scholar
  36. Laplagne, D. A., Esposito, M. S., Piatti, V. C., Morgenstern, N. A., Zhao, C., van Praag, H., et al. (2006). Functional convergence of neurons generated in the developing and adult hippocampus. Plos Biology, 4(12), e409. doi:06-PLBI-RA-0577R3 [pii] 10.1371/journal.pbio.0040409.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Laplagne, D. A., Kamienkowski, J. E., Esposito, M. S., Piatti, V. C., Zhao, C., Gage, F. H., & Schinder, A. F. (2007). Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis. European Journal Neuroscience, 25(10), 2973–2981. doi:EJN5549 [pii] 10.1111/j.1460-9568.2007.05549.x.CrossRefGoogle Scholar
  38. Lenck-Santini, P.-P., Rivard, B., Muller, R. U., & Poucet, B. (2005). Study of CA1 place cell activity and exploratory behavior following spatial and nonspatial changes in the environment. Hippocampus, 15(3), 356–69. doi:10.1002/hipo.20060.CrossRefPubMedGoogle Scholar
  39. Leutgeb, S., Leutgeb, J. K., Moser, M. B., & Moser, E. I. (2005). Place cells, spatial maps and the population code for memory. Current Opinion Neurobiology, 15(6), 738–746. doi:S0959-4388(05)00152-2 [pii] 10.1016/j.conb.2005.10.002.CrossRefGoogle Scholar
  40. Leutgeb, J. K., Leutgeb, S., Moser, M. B., & Moser, E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315(5814), 961–966. doi:315/5814/961 [pii] 10.1126/science.1135801.CrossRefPubMedGoogle Scholar
  41. MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron, 71(4), 737–749. doi:10.1016/j.neuron.2011.07.012.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Mankin, E. A., Sparks, F. T., Slayyeh, B., Sutherland, R. J., Leutgeb, S., & Leutgeb, J. K. (2012). Neuronal code for extended time in the hippocampus. Proc Natl Acad Sci U S A. 109(47), 19462–19467. doi: 10.1073/PNAS.1214107109. Epub 2012 Nov 6. Erratum in: Proc Natl Acad Sci U S A. 2015, 112(10), E1169.Google Scholar
  43. McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419–457.CrossRefPubMedGoogle Scholar
  44. McNaughton, B. L., Barnes, C. A., & O’Keefe, J. (1983). The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Experimental Brain Research, 52(1), 41–49.CrossRefPubMedGoogle Scholar
  45. Milner, B., & Penfield, W. (1956). The effect of hippocampal lesions on recent memory. Transactions of the American Neurological Association, 42-8(80th Meeting).Google Scholar
  46. Milner, B., Corkin, S., & Teuber, H. L. (1968). Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia, 6(3), 215–234. doi:10.1016/0028-3932(68)90021-3.CrossRefGoogle Scholar
  47. Milner, B., Squire, L. R., & Kandel, E. R. (1998). Cognitive neuroscience and the study of memory. Neuron, 20(3), 445–468.CrossRefPubMedGoogle Scholar
  48. Morris, R. G. M., Schenk, F., Tweedie, F., & Jarrard, L. E. (1990). Ibotenate lesions of hippocampus and/or subiculum: Dissociating components of allocentric spatial learning. The European Journal of Neuroscience, 2(12), 1016–1028 ( Scholar
  49. Morris, A. M., Curtis, B. J., Churchwell, J. C., Maasberg, D. W., & Kesner, R. P. (2013). Temporal associations for spatial events: The role of the dentate gyrus. Behavioural Brain Research, 256, 250–6. doi:10.1016/j.bbr.2013.08.021.CrossRefPubMedGoogle Scholar
  50. Munn, R. G. K., & Bilkey, D. K. (2011). The firing rate of hippocampal CA1 place cells is modulated with a circadian period. Hippocampus, 22, 1325–1337. doi:10.1002/hipo.20969.CrossRefPubMedGoogle Scholar
  51. Neunuebel, J. P., & Knierim, J. J. (2014). CA3 retrieves coherent representations from degraded input: Direct evidence for CA3 pattern completion and dentate gyrus pattern separation. Neuron, 81(2), 416–427. doi:10.1016/j.neuron.2013.11.017.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Nitz, D. (2009). Parietal cortex, navigation, and the construction of arbitrary reference frames for spatial information. Neurobiology of Learning and Memory, 91(2), 179–185. doi:10.1016/j.nlm.2008.08.007.CrossRefPubMedGoogle Scholar
  53. O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175.CrossRefPubMedGoogle Scholar
  54. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Hippocampus (Vol. 3, p. 570). Oxford: Oxford University Press.Google Scholar
  55. O’Reilly, R. C., & McClelland, J. L. (1994). Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade-off. Hippocampus, 4(6), 661–682. doi:10.1002/hipo.450040605.CrossRefPubMedGoogle Scholar
  56. Olton, D. S., & Papas, B. C. (1979). Spatial memory and hippocampal function. Neuropsychologia, 17(6), 669–682.CrossRefPubMedGoogle Scholar
  57. Olton, D. S., Walker, J. A., & Gage, F. H. (1978). Hippocampal connections and spatial discrimination. Brain Research, 139(2), 295–308.CrossRefPubMedGoogle Scholar
  58. Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsáki, G. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science (New York, N.Y.), 321(5894), 1322–1327. doi:10.1126/science.1159775.CrossRefGoogle Scholar
  59. Piatti, V. C., Esposito, M. S., & Schinder, A. F. (2006). The timing of neuronal development in adult hippocampal neurogenesis. The Neuroscientist, 12(6), 463–468. doi:12/6/463 [pii] 10.1177/1073858406293538.CrossRefPubMedGoogle Scholar
  60. Poucet, B., Save, E., & Lenck-Santini, P. P. (2000). Sensory and memory properties of hippocampal place cells. Reviews in the Neurosciences, 11(2–3), 95–111.PubMedGoogle Scholar
  61. Rangel, L. M., & Eichenbaum, H. (2013). What’s new is older. eLife, 2, e00605. doi:10.7554/eLife.00605.PubMedCentralCrossRefPubMedGoogle Scholar
  62. Rangel, L. M., Alexander, A. S., Aimone, J. B., Wiles, J., Gage, F. H., Chiba, A. A., & Quinn, L. K. (2014). Temporally selective contextual encoding in the dentate gyrus of the hippocampus. Nature Communications, 5, 3181. doi:10.1038/ncomms4181.PubMedCentralCrossRefPubMedGoogle Scholar
  63. Rivard, B., Li, Y., Lenck-Santini, P.-P., Poucet, B., & Muller, R. U. (2004). Representation of objects in space by two classes of hippocampal pyramidal cells. The Journal of General Physiology, 124(1), 9–25. doi:10.1085/jgp.200409015.PubMedCentralCrossRefPubMedGoogle Scholar
  64. Rolls, E. T. (2010). A computational theory of episodic memory formation in the hippocampus. Behavioural Brain Research, 215(2), 180–196. doi:10.1016/j.bbr.2010.03.027.CrossRefPubMedGoogle Scholar
  65. Rolls, E. T., & Kesner, R. P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. Progress in Neurobiology, 79(1), 1–48. doi:S0301-0082(06)00036-0.CrossRefPubMedGoogle Scholar
  66. Rosenbaum, R. S., Priselac, S., Köhler, S., Black, S. E., Gao, F., Nadel, L., & Moscovitch, M. (2000). Remote spatial memory in an amnesic person with extensive bilateral hippocampal lesions. Nature Neuroscience, 3(10), 1044–1048. doi:10.1038/79867.CrossRefPubMedGoogle Scholar
  67. Rosenbaum, R. S., Köhler, S., Schacter, D. L., Moscovitch, M., Westmacott, R., Black, S. E., et al. (2005). The case of K.C.: Contributions of a memory-impaired person to memory theory. Neuropsychologia, 43(7), 989–1021. doi:10.1016/j.neuropsychologia.2004.10.007.CrossRefPubMedGoogle Scholar
  68. Rowland, D. C., Yanovich, Y., & Kentros, C. G. (2011). A stable hippocampal representation of a space requires its direct experience. Proceedings of the National Academy of Sciences, 108(35), 14654–14658. doi:10.1073/pnas.1105445108.CrossRefGoogle Scholar
  69. Sederberg, P. B., Miller, J. F., Howard, M. W., & Kahana, M. J. (2010). The temporal contiguity effect predicts episodic memory performance. Memory & Cognition, 38(6), 689–699. doi:10.3758/MC.38.6.689.CrossRefGoogle Scholar
  70. Shen, J., Barnes, C. A., McNaughton, B. L., Skaggs, W. E., & Weaver, K. L. (1997). The effect of aging on experience-dependent plasticity of hippocampal place cells. The Journal of Neuroscience, 17(17), 6769–6782.PubMedGoogle Scholar
  71. Skaggs, W. E., McNaughton, B. L., Wilson, M. A., & Barnes, C. A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus, 6(2), 149–172. doi:10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K.CrossRefPubMedGoogle Scholar
  72. Tashiro, A., Makino, H., & Gage, F. H. (2007). Experience-specific functional modification of the dentate gyrus through adult neurogenesis: A critical period during an immature stage. The Journal of Neuroscience, 27(12), 3252–3259. doi:27/12/3252 [pii] 10.1523/JNEUROSCI.4941-06.2007.CrossRefPubMedGoogle Scholar
  73. Treves, A., & Rolls, E. T. (1992). Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus, 2(2), 189–199. doi:10.1002/hipo.450020209.CrossRefPubMedGoogle Scholar
  74. Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., et al. (2007). Schemas and memory consolidation. Science (New York, N.Y.), 316(5821), 76–82. doi:10.1126/science.1135935.CrossRefGoogle Scholar
  75. Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., & McNaughton, B. L. (1996). Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model. Hippocampus, 6(3), 271–280. doi:10.1002/(SICI)1098-1063(1996)6:3<271::AID-HIPO5>3.0.CO;2-Q.CrossRefPubMedGoogle Scholar
  76. Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53(1), 1–25. doi:10.1146/annurev.psych.53.100901.135114.CrossRefPubMedGoogle Scholar
  77. Underwood, B. J. (1969). Attributes of memory. Psychological Review, 76(6), 559–573.CrossRefGoogle Scholar
  78. Underwood, B. J. (1977). Temporal codes for memories: Issues and problems. Hillsdale: Erlbaum.Google Scholar
  79. Van Strien, N. M., Cappaert, N. L. M., & Witter, M. P. (2009). The anatomy of memory: An interactive overview of the parahippocampal-hippocampal network. Nature Reviews. Neuroscience, 10(4), 272–282. doi:10.1038/nrn2614.CrossRefPubMedGoogle Scholar
  80. Whishaw, I. Q., Cassel, J. C., & Jarrad, L. E. (1995). Rats with fimbria-fornix lesions display a place response in a swimming pool: A dissociation between getting there and knowing where. The Journal of Neuroscience, 15(8), 5779–5788.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lara M. Rangel
    • 3
  • Laleh K. Quinn
    • 2
  • Andrea A. Chiba
    • 1
    Email author
  1. 1.Department of Cognitive Science and Program in Neuroscience, Temporal Dynamics of Learning CenterUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of Cognitive ScienceUniversity of California, San DiegoLa JollaUSA
  3. 3.NSF Cognitive Rhythms Collaborative, College of Arts and Sciences PsychologyBoston UniversityBostonUSA

Personalised recommendations