Skip to main content

Balancing the Contributions of Multiple Neural Systems During Learning and Memory

  • Chapter
  • First Online:
The Neurobiological Basis of Memory

Abstract

From the research era in the early 1970s that defined Ray Kesner’s and my early forays into memory research, the identification of memory attributes that depend on different neural systems has led to identification of neuroendocrine mechanisms that regulate memory processing across those systems. This chapter examines important points of convergence between investigations into multiple memory systems and memory modulation. Reviewed here is evidence showing that neurotransmitter release and energy availability within these systems participate importantly in regulating neural processing during times of learning and memory. In particular, the findings reveal neurochemical responses across neural systems while rats are engaged in different learning and memory tasks. These results thereby integrate information about the brain systems that participate in processing different attributes of memory with neurochemical regulation of the processing of different attributes of memory across neural systems.

Research described here was supported by NIA R01 AG07648, NIDA DA024129, NSF IOS 08-43175, and 13-18490, and by a grant from Alzheimer’s Association.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, A. K., Dozmorov, M., Li, R., Huang, F. S., Hellberg, F., Danielson, J., Tian, Y., Ekstrom, J., Sandberg, M., & Wigstrom, H. (2009). Persistent LTP without triggered protein synthesis. Neuroscience Research, 63, 59–65.

    Article  PubMed  Google Scholar 

  • Archer, T., Söderberg, U., Ross, S. B., & Jonsson, G. (1984). Role of olfactory bulbectomy and DSP4 treatment in avoidance learning in the rat. Behavioral Neuroscience, 98, 496–505.

    Article  PubMed  Google Scholar 

  • Bermudez-Rattoni, F., Introini-Collison, I. B., & McGaugh, J. L. (1991). Reversible inactivation of the insular cortex by tetrodotoxin produces retrograde and anterograde amnesia for inhibitory avoidance and spatial learning. Proceedings of the National Academy of Science USA, 88, 5379–5382.

    Article  Google Scholar 

  • Cahill, L., & Alkire, M. T. (2003). Epinephrine enhancement of human memory consolidation: Interaction with arousal at encoding. Neurobiology of Learning and Memory, 79, 194–198.

    Article  PubMed  Google Scholar 

  • Chang, Q., & Gold, P. E. (2003a). Intra-hippocampal lidocaine injections impair acquisition of a place task and facilitate acquisition of a response task in rats. Behavioural Brain Research, 144, 19–24.

    Article  PubMed  Google Scholar 

  • Chang, Q., & Gold, P. E. (2003b). Switching memory systems during learning: Changes in patterns of brain acetylcholine release in the hippocampus and striatum in rats. Journal of Neuroscience, 23, 3001–3005.

    PubMed  Google Scholar 

  • Chang, Q., & Gold, P. E. (2004). Inactivation of dorsolateral striatum impairs acquisition of ­response learning in cue-deficient but not cue-available conditions. Behavioral Neuroscience, 118, 383–388.

    Article  PubMed  Google Scholar 

  • Cherkin, A. (1969). Kinetics of memory consolidation: Role of amnesic treatment parameters. Proceedings of the National Academy of Science USA, 63, 1094–1101.

    Article  Google Scholar 

  • Chorover, S. L., & Schiller, P. H. (1965). Short-term retrograde amnesia in rats. Journal of ­Comparative and Physiological Psychology, 59, 73–78.

    Article  PubMed  Google Scholar 

  • Chuquet, J., Quilichini, P., Nimchinsky, E. A., & Buzsáki, G. (2010). Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex. Journal of Neuroscience, 30, 15298–15303.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dornelles, A., de Lima, M. N. M., Grazziotin. M., Presti-Torres, J., Garcia, V. A., Scalco, F. S., Roesler, R., & Schröder, N. (2007). Adrenergic enhancement of consolidation of object recognition memory. Neurobiology of Learning and Memory, 88, 137–142.

    Article  PubMed  Google Scholar 

  • Gaskin, S., & White, N. M. (2006). Cooperation and competition between the dorsal hippocampus and lateral amygdala in spatial discrimination learning. Hippocampus, 16, 577–585.

    Article  PubMed  Google Scholar 

  • Ghanbarian, E., & Motamedi, F. (2013). Ventral tegmental area inactivation suppresses the ­expression of CA1 long term potentiation in anesthetized rat. PloS One, 8, e58844.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gold, P. E. (1992). Modulation of memory processing: Enhancement of memory in rodents and humans. In L. R. Squire & N. Butters (Eds.), Neuropsychology of memory, (2nd Ed., pp. ­402–414). New York: Guilford.

    Google Scholar 

  • Gold, P. E. (1995). Modulation of emotional and non-emotional memories: Same pharmacological systems, different neuroanatomical systems. In J. L. McGaugh, N. M. Weinberger, & G. S. Lynch (Eds.), Brain and memory: Modulation and mediation of neural plasticity, (pp. 41–74). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Gold, P. E. (2001). Drug enhancement of memory in aged rodents and humans. In: Carroll, M. E. & Overmier, J. B. (Eds.), Animal research and human health: Advancing human welfare through behavioral science, (pp. 293–304). Washington DC: American Psychological Association.

    Chapter  Google Scholar 

  • Gold, P. E. (2008). Protein synthesis inhibition: Memory formation vs. amnesia. Neurobiology of Learning and Memory, 89, 201–211.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gold, P. E., & Korol, D.L. (2010). Hormones and memory. In G. Koob, M. Le Moal, & R. F. Thompson (Eds.), Encyclopedia of behavioral neuroscience (Vol. 2, pp. 57–64). Oxford: ­Academic Press.

    Chapter  Google Scholar 

  • Gold, P. E., & Korol, D. L. (2012). Making memories matter. Special issue: The impact of emotion on cognition—dissociating between enhancing and impairing effects. F. Dolcos, L. Wang, and M. Mather, hosts. Frontiers in Integrative Neuroscience, 6, 116. doi:10.3389/fnint.2012.00116.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gold, P. E., & McGaugh, J. L. (1975). A single trace, two process view of memory storage ­processes. In: D. Deutsch & J. A. Deutsch (Eds.), Short term memory (pp. 355–390). New York: Academic Press.

    Google Scholar 

  • Gold, P. E., & Zornetzer, S. F. (1983). The mnemon and its juices: Neuromodulation of memory processes. Behavioral and Neural Biology, 38, 151–189,

    Article  PubMed  Google Scholar 

  • Gold, P. E., Macri, J., & McGaugh, J. L. (1973). Retrograde amnesia gradients: Effects of direct cortical stimulation. Science, 197, 1343–1345.

    Article  Google Scholar 

  • Gold, P. E., Hankins, L., Edwards, R. M., Chester, J., & McGaugh, J. L. (1975). Memory interference and facilitation with posttrial amygdala stimulation: Effect on memory varies with ­footshock level. Brain Research, 86, 509–513.

    Article  PubMed  Google Scholar 

  • Gold, P. E., Newman, L. A., Scavuzzo, C. J., & Korol, D. L. (2013). Modulation of multiple ­memory systems: From neurotransmitters to metabolic substrates. Hippocampus, 23, 1053–1065.

    Article  PubMed  Google Scholar 

  • Gold, P. E., & van Buskirk, R. B. (1975). Facilitation of time dependent memory processes with posttrial epinephrine injections. Behavioral Biology, 13, 145–153.

    Google Scholar 

  • Gold, P. E., & van Buskirk, R. B. (1976). Effects of posttrial hormone injections on memory processes. Hormones and Behavior, 7, 509–517.

    Google Scholar 

  • Gold, P. E., van Buskirk, R. B., & Haycock, J. W. (1977). Effects of post training epinephrine injections on retention of avoidance training in mice. Behavioral Biology, 20, 197–204.

    Google Scholar 

  • Hall, J. L., Gonder-Frederick, L. A., Chewning, W. W., Silveira, J., & Gold, P. E. (1989). Glucose enhancement of performance on memory tests in young and aged humans. Neuropsychologia, 27, 1129–1138.

    Article  PubMed  Google Scholar 

  • Huff, N. C., Wright-Hardesty, K. J., Higgins, E. A., Matus-Amat, P., & Rudy, J. W. (2005). Context pre-exposure obscures amygdala modulation of contextual-fear conditioning. Learning and Memory, 12, 456–460.

    Article  PubMed  Google Scholar 

  • Jarrard, L. E., Isaacson, R. L., & Wickelgren, W. O. (1964). Effects of hippocampal ablation and intertrial interval on runway acquisition and extinction. Journal of Comparative and Physiological Psychology, 57, 442–444.

    Article  PubMed  Google Scholar 

  • Kesner, R. P. (1985). Correspondence between humans and animals in coding of temporal ­attributes: Role of hippocampus and prefrontal cortex. Annals of the New York Academy of Science, 44, 122–136.

    Article  Google Scholar 

  • Kesner, R. P. (2009). Tapestry of memory. Behavioral Neuroscience, 123, 1–13.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Bolland, B. L., & Dakis, M. (1993). Memory for spatial locations, motor responses, and objects: Triple dissociation among the hippocampus, caudate nucleus, and extrastriate ­visual cortex. Experimental Brain Research, 93, 462–470.

    Article  PubMed  Google Scholar 

  • Kleim, J. A., Bruneau, R., Calder, K., Pocock, D., VandenBerg, P. M., MacDonald, E., Monfils, M. H., Sutherland, R. J., & Nader, K. (2003). Functional organization of adult motor cortex is dependent upon continued protein synthesis. Neuron, 40, 167–176.

    Google Scholar 

  • Korol, D. L. (2002). Enhancing cognitive function across the life span. Annals of the New York Academy of Science, 959, 167–179.

    Article  Google Scholar 

  • Korol, D. L., & Gold, P. E. (2007). Modulation of learning and memory by adrenal and ovarian hormones. In R. P. Kesner & J. L. Martinez (Eds.), Neurobiology of learning and memory (pp. 243–268). New York: Elsevier Science.

    Chapter  Google Scholar 

  • Korol, D. L., Gold, P. E., & Scavuzzo, C. J. (2013). Use it and boost it with physical and mental activity. Hippocampus, 23, 1125–1135.

    Article  PubMed  Google Scholar 

  • Krebs, D. L., & Parent, M. B. (2005). The enhancing effects of hippocampal infusions of ­glucose are not restricted to spatial working memory. Neurobiology of Learning and Memory, 83, 168–172.

    Article  PubMed  Google Scholar 

  • Mabry, T. R., Gold, P. E., & McCarty, R. (1995). Age-related changes in plasma catecholamine and glucose responses of F-344 rats to footshock as in inhibitory avoidance training. Neurobiology of Learning and Memory, 64, 146–155.

    Article  PubMed  Google Scholar 

  • Manning, C. A., Hall, J. L., & Gold, P. E. (1990). Glucose effects on memory and other neuropsychological tests in elderly humans. Psychological Sciences, 1, 307–311.

    Article  Google Scholar 

  • Manning, C. A., Parsons, M. W., & Gold, P. E. (1992). Anterograde and retrograde enhancement of 24-hour memory by glucose in elderly humans. Behavioral and Neural Biology, 58, 125–130.

    Article  PubMed  Google Scholar 

  • Manning, C. A., Ragozzino, M., & Gold, P. E. (1993). Glucose enhancement of memory in patients with Alzheimer’s disease. Neurobiology of Aging, 14, 523–528.

    Article  PubMed  Google Scholar 

  • Manning, C. A., Parsons, M. W., Cotter, E. M., & Gold, P. E. (1997). Glucose effects on declarative and nondeclarative memory in healthy elderly and young adults. Psychobiology, 25, 103–108.

    Google Scholar 

  • Manning, C. A., Honn, V. S., Stone, W. S., Jane, J. S., & Gold, P. E. (1998). Glucose effects on cognition in adults with Down’s Syndrome. Neuropsychology, 12, 479–484.

    Article  PubMed  Google Scholar 

  • Marriott, L. K., & Korol, D. L. (2003). Short-term estrogen treatment in ovariectomized rats augments hippocampal acetylcholine release during place learning. Neurobiology of Learning and Memory, 80, 315–322.

    Google Scholar 

  • McDonald, R. J., & White, N. M. (1993). A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum. Behavioral Neuroscience, 107, 3–22.

    Article  PubMed  Google Scholar 

  • McDonald, R. J., & White, N. M. (1995). Information acquired by the hippocampus interferes with acquisition of the amygdala-based conditioned-cue preference in the rat. Hippocampus, 5, 189–197.

    Article  PubMed  Google Scholar 

  • McGaugh, J. L. (1966). Time-dependent processes in memory storage. Science, 153, 1351–1358.

    Article  PubMed  Google Scholar 

  • McGaugh, J. L. (1983). Hormonal influences on memory. Annual Review Psychology, 34, 297–323.

    Article  Google Scholar 

  • McGaugh, J. L., & Roozendaal, B. (2002). Role of adrenal stress hormones in forming lasting memories in the brain. Current Opinion Neurobiology, 12, 205–210.

    Article  Google Scholar 

  • McHugh, T. J., & Tonegawa, S. (2007). Spatial exploration is required for the formation of contextual fear memory. Behavioral Neuroscience, 121, 335–339.

    Article  PubMed  Google Scholar 

  • McIntyre, C. K., Marriott, L. K., & Gold, P. E. (2003a). Patterns of brain acetylcholine release predict individual differences in preferred learning strategies in rats. Neurobiology of Learning and Memory, 79, 177–183

    Article  PubMed  Google Scholar 

  • McIntyre, C. K., Marriott, L. K., & Gold, P. E. (2003b). Cooperation between memory systems: Acetylcholine release in the amygdala correlates positively with good performance on a hippocampus-dependent task. Behavioral Neuroscience, 117, 320–326.

    Article  PubMed  Google Scholar 

  • McIntyre, C. K., Pal, S. N., Marriott, L. K., & Gold, P. E. (2002). Competition between memory systems: Acetylcholine release in the hippocampus correlates negatively with good performance on an amygdala-dependent task. Journal of Neuroscience, 22, 1171–1176.

    PubMed  Google Scholar 

  • McNay, E. C., & Gold, P. E. (2001). Age-related differences in hippocampal extracellular fluid glucose concentration during behavioral testing and following systemic glucose administration. Journal of Gerontology: Biological Sciences, 56A, B66–B71.

    Google Scholar 

  • McNay, E. C., & Sherwin, R. S. (2004). Effect of recurrent hypoglycemia on spatial cognition and cognitive metabolism in normal and diabetic rats. Diabetes, 53, 418–425.

    Article  PubMed  Google Scholar 

  • McNay, E. C., Fries, T. M., & Gold, P. E. (2000). Decreases in rat extracellular hippocampal ­glucose concentration associated with cognitive demand during a spatial task. Proceedings of the National Academy of Science USA, 97, 2881–2885.

    Article  Google Scholar 

  • McNay, E. C., McCarty, R. M., & Gold, P. E. (2001). Fluctuations in glucose concentration during behavioral testing: Dissociations both between brain areas and between brain and blood. Neurobiology of Learning and Memory, 75, 325–337.

    Article  PubMed  Google Scholar 

  • Means, L. W., Walker, D. W., & Isaacson, R. L. (1970). Facilitated single alternation go, no- go performance following hippocampectomy in the rat. Journal of Comparative and Physiological Psychology, 72, 278–285

    Article  PubMed  Google Scholar 

  • Milner, B., Corkin, S., & Teuber, H. L. (1968). Further analysis of the hippocampal amnesic ­syndrome: 14-year follow-up study of HM. Neuropsychologia, 6, 215–234.

    Article  Google Scholar 

  • Morris, K. A., & Gold, P. E. (2013). Epinephrine and glucose modulate training-related CREB phosphorylation in old rats: Relationships to age-related memory impairments. Experimental Gerontology, 48, 115–127.

    Article  PubMed Central  PubMed  Google Scholar 

  • Morris, K. A., Chang, Q., Mohler, E. G., & Gold, P. E. (2010). Age-related memory impairments due to reduced blood glucose responses to epinephrine. Neurobiology of Aging, 31, 2136–2145.

    Article  PubMed Central  PubMed  Google Scholar 

  • Naeem, M., & White, N. M. (2011). Lesions of basolateral and central amygdala differentiate conditioned cue preference learning with and without unreinforced preexposure. Behavioral Neuroscience, 125, 84–92.

    Article  PubMed  Google Scholar 

  • Newcomer, J. W., Craft, S., Fucetola, R., Moldin, S. O., Selke, G., Paras, L., & Miller, R. (1999). Glucose-induced increase in memory performance in patients with schizophrenia. Schizophrenia Bulletin, 25, 321–335.

    Article  PubMed  Google Scholar 

  • Newman, L. A., Korol, D. L., & Gold, P. E. (2011). Lactate produced by glycogenolysis in ­astrocytes regulates memory. PLoS One, 6, e28427.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nicoll, R. A., & Roche, K. W. (2013). Long-term potentiation: Peeling the onion. Neuropharmacology, 74, 18–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • Packard, M. G. (1999). Glutamate infused posttraining into the hippocampus or caudate-putamen differentially strengthens place and response learning. Proceedings of the National Academy of Science USA, 96, 12881–12886.

    Article  Google Scholar 

  • Packard, M. G., & Cahill, L. (2001). Affective modulation of multiple memory systems. Current Opinion in Neurobiology, 11, 752–756.

    Article  PubMed  Google Scholar 

  • Packard, M. G., & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65, 65–72.

    Article  PubMed  Google Scholar 

  • Paolino, R. M., Quartermain, D., & Miller, N. E. (1966). Different temporal gradients of retrograde amnesia produced by carbon dioxide anesthesia and electroconvulsive shock. Journal of ­Comparative and Physiological Psychology, 62, 270–274.

    Article  PubMed  Google Scholar 

  • Parsons, M., & Gold, P. E. (1992). Glucose enhancement of memory in elderly humans: An inverted-U dose-response curve. Neurobiology of Aging, 13, 401–404.

    Article  PubMed  Google Scholar 

  • Poldrack, R. A., & Packard, M. G. (2003). Competition among multiple memory systems: ­Converging evidence from animal and human brain studies. Neuropsychologia, 41, 245–251.

    Article  PubMed  Google Scholar 

  • Pych, J. C., Chang, Q., Colon-Rivera, C., & Gold, P. E. (2005a). Acetylcholine release in hippocampus and striatum during training on a rewarded spontaneous alternation task. Neurobiology of Learning and Memory, 84, 93–101.

    Article  PubMed  Google Scholar 

  • Pych, J. C., Chang, Q., Colon-Rivera, C., Haag, R., & Gold, P. E. (2005b). Acetylcholine release in the hippocampus and striatum during place and response training. Learning and Memory, 12, 564–572.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pych, J. C., Kim, M., & Gold, P. E. (2006). Effects of injections of glucose into the dorsal striatum on learning of place and response mazes. Behavioural Brain Research, 167, 373–378.

    Article  PubMed  Google Scholar 

  • Qi, Z., & Gold, P. E. (2009). Intrahippocampal infusions of anisomycin produce amnesia: ­Contributions of increased release of norepinephrine, dopamine and acetylcholine. Learning and Memory, 16, 308–314.

    Article  PubMed Central  PubMed  Google Scholar 

  • Quartermain, D., Paolino, R. M., & Miller, N. E. (1965). A brief temporal gradient of retrograde amnesia independent of situational change. Science, 149, 1116–1118.

    Article  PubMed  Google Scholar 

  • Ragozzino, M. E., Unick, K. E., & Gold, P. E. (1996). Hippocampal acetylcholine release during memory testing in rats: Augmentation by glucose. Proceedings of the National Academy of Science USA, 93, 4693–4698.

    Article  Google Scholar 

  • Ragozzino, M. E., Pal, S. N., Unick, K., Stefani, M. R., & Gold, P. E. (1998). Modulation of ­hippocampal acetylcholine release and of memory by intrahippocampal glucose injections. Journal of Neuroscience, 18, 1595–1601.

    PubMed  Google Scholar 

  • Restle, F. (1957). Discrimination of cues in mazes: A resolution of the place-vs.- response ­question. Psychological Review, 64, 217–228.

    Article  PubMed  Google Scholar 

  • Routtenberg, A. (2013). Lifetime memories from persistently supple synapses. Hippocampus, 2, 202–206.

    Article  Google Scholar 

  • Routtenberg, A., & Rekart, J. L. (2005). Post-translational protein modification as the substrate for long-lasting memory. Trends in Neuroscience, 28, 12–19.

    Article  Google Scholar 

  • Rudy, J. W., & Matus-Amat, P. (2005). The ventral hippocampus supports a memory representation of context and contextual fear conditioning: Implications for a unitary function of the hippocampus. Behavioral Neuroscience, 119, 154–163

    Article  PubMed  Google Scholar 

  • Rudy, J. W., Barrientos, R. M., & O’Reilly, R. C. (2002). Hippocampal formation supports ­conditioning to memory of a context. Behavioral Neuroscience, 116, 530–538.

    Article  PubMed  Google Scholar 

  • Salado-Castillo, R., Guante, M. A., Alvarado, R., Quirarte, G. L., & Prado-Alcalá, R. A. (1996). Effects of regional GABAergic blockade of the striatum on memory consolidation. Neurobiology of Learning and Memory, 66, 102–108.

    Article  PubMed  Google Scholar 

  • Schroeder, J. P., & Packard, M. G. (2003). Systemic or intra-amygdala injections of glucose ­facilitate memory consolidation for extinction of drug-induced conditioned reward. European Journal of Neuroscience, 17, 1482–1488.

    Article  PubMed  Google Scholar 

  • Sharma, A. V., Nargang, F. E., & Dickson, C. T. (2012). Neurosilence: Profound suppression of neural activity following intracerebral administration of the protein synthesis inhibitor ­anisomycin. Journal of Neuroscience, 32, 2377–2387.

    Article  PubMed  Google Scholar 

  • Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231.

    Article  PubMed  Google Scholar 

  • Squire, L. R., & Spanis, C. W. (1984). Long gradient of retrograde amnesia in mice: Continuity with the findings in humans. Behavioral Neuroscience, 98, 345–348.

    Article  PubMed  Google Scholar 

  • Squire, L. R., Slater, P. C., & Chace, P. M. (1975). Retrograde amnesia: Temporal gradient in very long term memory following electroconvulsive therapy. Science, 187, 77–79.

    Article  PubMed  Google Scholar 

  • Stefani, M. R., & Gold, P. E. (1998). Intra-septal injections of glucose and glibenclamide attenuate galanin-induced spontaneous alternation performance deficits in the rat. Brain Research, 813, 50–56.

    Article  PubMed  Google Scholar 

  • Sternberg, D. B., Isaacs, K., Gold, P. E., & McGaugh, J. L. (1985). Epinephrine facilitation of appetitive learning: Attenuation with adrenergic receptor antagonists. Behavioral and Neural Biology, 44, 447–453.

    Article  PubMed  Google Scholar 

  • Stone, W. S., & Seidma, L. J. (2008). Toward a model of memory enhancement in schizophrenia: Glucose administration and hippocampal function. Schizophrenia Bulletin, 34, 93–108.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stone, W. S., Seidman, L. J., Wojcik, J. D., & Green, A. I. (2003). Glucose effects on cognition in schizophrenia. Schizophrenia Research, 62, 93–103.

    Article  PubMed  Google Scholar 

  • Suzuki, A., Stern, S. A., Bozdagi, O., Huntley, G. W., Walker, R. H., Magistretti, P. J., & Alberini, C. M. (2011). Astrocyte-neuron lactate transport is required for long-term memory formation. Cell, 144, 810–823.

    Article  PubMed Central  PubMed  Google Scholar 

  • Talley, C. E. P., Kahn, S., Alexander, L., & Gold, P.E. (2000). Epinephrine fails to enhance performance of food-deprived rats on a delayed spontaneous alternation task. Neurobiology of Learning and Memory, 73, 79–86.

    Google Scholar 

  • Thomas, G. J. (1971). Maze retention by rats with hippocampal lesions and with fornicotomies. Journal of Comparative and Physiological Psychology, 75, 41–49.

    Article  PubMed  Google Scholar 

  • Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189–208.

    Article  PubMed  Google Scholar 

  • Villers, A., Godaux, E., & Ris, L. (2012). Long-lasting LTP requires neither repeated trains for its induction nor protein synthesis for its development. PLoS One, 7, e40823.

    Article  PubMed Central  PubMed  Google Scholar 

  • Walker, D. W., Messer, L. G., Freund, G., & Means, L. W. (1972). Effect of hippocampal lesions and intertrial interval on single-alternation performance in the rat. Journal of Comparative and Physiological Psychology, 80, 469–477.

    Article  PubMed  Google Scholar 

  • White, N. M. (2008). Multiple memory systems in the brain: Cooperation and competition. In H. B. Eichenbaum (Ed.), Memory systems of Byrne, J., editor, Learning and memory: A comprehensive reference (Vol 3, pp. 9–46). Oxford: Elsevier.

    Chapter  Google Scholar 

  • White, N. M., & McDonald, R. J. (1993). Acquisition of a spatial conditioned place preference is impaired by amygdala lesions and improved by fornix lesions. Behavioural Brain Research, 55, 269–281.

    Article  PubMed  Google Scholar 

  • White, N. M., & McDonald, R. J. (2002). Multiple parallel memory systems in the brain of the rat. Neurobiology of Learning and Memory, 77, 125–184.

    Article  PubMed  Google Scholar 

  • Zornetzer, S. F., & Gold, M. S. (1976). The locus coeruleus: Its possible role in memory consolidation. Physiology & Behavior, 16, 331–336.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Gold PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gold, P. (2016). Balancing the Contributions of Multiple Neural Systems During Learning and Memory. In: Jackson, P., Chiba, A., Berman, R., Ragozzino, M. (eds) The Neurobiological Basis of Memory. Springer, Cham. https://doi.org/10.1007/978-3-319-15759-7_12

Download citation

Publish with us

Policies and ethics