Advertisement

Prefrontal Cortex and Basal Ganglia Attributes Underlying Behavioral Flexibility

  • Michael E. RagozzinoEmail author
  • Phillip M. Baker
Chapter

Abstract

The Kesner neurobiologically based attribute model of memory is a multiple memory systems model proposing that different brain systems support specific memory representations based on attribute information. The model has served as a useful framework to test hypotheses about the nature of memory representations in the brain. The model has expanded beyond the neurobiology of memory to investigate how separate prefrontal cortex subregions support behavioral flexibility based on how attribute information must be used in different ways to allow adaptive behavior. Behavioral flexibility refers to the ability to adapt strategies or choice patterns when changes in external or internal conditions signal a behavioral strategy switch. The chapter first describes how different prefrontal cortex subregions support the flexible use of attribute information based on the behavioral operation required to adapt. Under conditions in which a change in outcomes signals that a behavioral switch should occur, accumulating evidence supports the idea that the prelimbic cortex enables a switch in strategies that allows the flexible use of different attribute information, that is, set-shifting. The orbitofrontal cortex enables behavioral flexibility when conditions require a new choice pattern using the same attribute information, that is, reversal learning. The chapter additionally considers a role for the dorsomedial striatum, which receives input from multiple prefrontal areas, in both set-shifting and reversal learning. Based on examination of the error patterns in these different tests, the prefrontal cortex enables behavioral flexibility by initially inhibiting a previous choice pattern and/or generating a new choice pattern while the dorsomedial striatum facilitates the reliable execution of a new choice pattern. It also describes recent findings indicating that the prelimbic cortex along with the subthalamic nucleus and dorsomedial striatum acts in a cooperative manner to enable behavioral flexibility when cues, as opposed to outcomes, guide a proactive behavioral switch. Specifically, the prelimbic cortex and subthalamic nucleus enable the rapid inhibition of an ongoing choice pattern while concomitantly a neural system that includes the prelimbic cortex and dorsomedial striatum enables selection of an alternative choice pattern and maintenance of that selection. Taken together, the Kesner neurobiological model of memory has served as a framework to build substantial support for the idea that prefrontal cortex and basal ganglia structures are crucial to allow rapid and repeated adaptations under changing environmental demands.

Keywords

Prelimbic cortex Orbitofrontal cortex Striatum Subthalamic nucleus Behavioral flexibility 

Notes

Acknowledgments

We are grateful to Dante A. Ragozzino for the maze illustration design in Fig. 11.3. We are particularly grateful to Ray Kesner who has had a deep influence on the research described throughout this chapter. He is a wonderful mentor with his constant positive and supportive approach. Ray Kesner has many magnificent attributes as a human being and a scientist, but surely one of his greatest attributes is his insatiable pursuit of scientific discovery that is expressed with pure joy and excitement which serves as an inspiration for current and future scientists.

References

  1. Adams, S., Kesner, R. P., & Ragozzino, M. E. (2001). Role of the medial and lateral caudate-putamen in mediating an auditory conditional response association. Neurobiology of Learning and Memory, 76, 106–116.CrossRefPubMedGoogle Scholar
  2. Afsharpour, S. (1985). Topographical projections of the cerebral cortex to the subthalamic nucleus. The Journal of Comparative Neurology, 236, 14–28.CrossRefPubMedGoogle Scholar
  3. Akopian, G., & Walsh, J. P. (2002). Corticostriatal paired-pulse potentiation produced by voltage-dependent activation of NMDA receptors and L-type Ca(2+) channels. Journal of Neurophysiology, 87, 157–165.PubMedGoogle Scholar
  4. Baker, P. M., & Ragozzino, M. E. (2014a). The prelimbic cortex and subthalamic nucleus ­contribute to cue-guided behavioral switching. Neurobiology of Learning and Memory, 107, 65–78.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Baker, P. M., & Ragozzino, M. E. (2014b). Contralateral disconnection of the rat prelimbic cortex and dorsomedial striatum impairs cue-guided behavioral switching. Learning and Memory, 21, 368–379.Google Scholar
  6. Baunez, C., & Robbins, T. W. (1999). Effects of transient inactivation of the subthalamic nucleus by local muscimol and APV infusions on performance on the five-choice serial reaction time task in rats. Psychopharmacology, 141(1), 57–65.CrossRefPubMedGoogle Scholar
  7. Berendse, H. W., Galis-de Graaf, Y., & Groenewegen, H. J. (1992). Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. The Journal of Comparative Neurology, 316, 314–347.CrossRefPubMedGoogle Scholar
  8. Birrell, J. M., & Brown, V. J. (2000). Medial frontal cortex mediates perceptual attentional set shifting in the rat. The Journal of Neuroscience: The Official Journal of the Society for ­Neuroscience, 20, 4320–4324.Google Scholar
  9. Boettiger, C. A., & Doupe, A. J. (2001). Developmentally restricted synaptic plasticity in a ­songbird nucleus required for song learning. Neuron, 31, 809–818.CrossRefPubMedGoogle Scholar
  10. Boix-Trelis, N., Vale-Martinez, A., Guillazo-Blanch, G., Costa-Miserachs, D., & Marti-Nicolovius, M. (2006). Effects of nucleus basalis magnocellularis stimulation on a socially transmitted food preference and c-Fos expression. Learning & Memory (Cold Spring Harbor, N. Y.), 13, 783–793.CrossRefGoogle Scholar
  11. Boulougouris, V., Dalley, J. W., & Robbins, T. W. (2007). Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behavioural Brain Research, 179, 219–228.CrossRefPubMedGoogle Scholar
  12. Chudasama, Y., & Robbins, T. W. (2006). Functions of frontostriatal systems in cognition: Comparative neuropsychopharmacological studies in rats, monkeys and humans. Biological ­Psychology, 73(1), 19–38.CrossRefPubMedGoogle Scholar
  13. Chudasama, Y., Bussey, T. J., & Muir, J. L. (2001). Effects of selective thalamic and prelimbic ­cortex lesions on two types of visual discrimination and reversal learning. The European Journal of Neuroscience 0953-816X (P), 14, 1009–1020.Google Scholar
  14. Churchwell, J. C., Morris, A. M., Heurtelou, N. M., & Kesner, R. P. (2009). Interactions between the prefrontal cortex and amygdala during delay discounting and reversal. Behavioral Neuroscience, 123, 1185–1196.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Conde, F., Maire-Lepoivre, E., Audinat, E., & Crepel, F. (1995). Afferent connections of the ­medial frontal cortex of the rat. II. Cortical and subcortical afferents. The Journal of Comparative Neurology, 352, 567–593.CrossRefPubMedGoogle Scholar
  16. Dang, M. T., Yokoi, F., Yin, H. H., Lovinger, D. M., Wang, Y., & Li, Y. (2006). Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proceedings of the National Academy of Sciences of the United States of America, 103, 15254–15259.Google Scholar
  17. Delatour, B., & Gisquet-Verrier, P. (1999). Lesions of the prelimbic-infralimbic cortices in rats do not disrupt response selection processes but induce delay-dependent deficits: Evidence for a role in working memory? Behavioral Neuroscience, 113, 941–955.CrossRefPubMedGoogle Scholar
  18. Dias, R., & Aggleton, J. P. (2000). Effects of selective excitotoxic prefrontal lesions on acquisition of nonmatching- and matching-to-place in the T-maze in the rat: Differential involvement of the prelimbic-infralimbic and anterior cingulate cortices in providing behavioural flexibility. The European Journal of Neuroscience 0953-816X (P), 12, 4457–4466.Google Scholar
  19. Eagle, D. M., Baunez, C., Hutcheson, D. M., Lehmann, O., Shah, A. P., & Robbins, T. W. (2008). Stop-signal reaction-time task performance: Role of prefrontal cortex and subthalamic nucleus. Cerebral Cortex (New York, N. Y.: 1991), 18(1), 178–188.CrossRefGoogle Scholar
  20. Eden, C. G., Lamme, V., & Uylings, H. (1992). Heterotopic cortical afferents to the medial prefrontal cortex in the rat. A combined retrograde and anterograde tracer study. European Journal of Neuroscience, 4, 77–97.CrossRefPubMedGoogle Scholar
  21. Featherstone, R., McDonald, R. (2005). Lesions of the dorsolateral striatum impair the acquisition of a simplified stimulus-response dependent conditional discrimination task. Neuroscience, 136, 387–395.CrossRefPubMedGoogle Scholar
  22. Fujimoto, K., & Kita, H. (1993). Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat. Brain Research, 609, 185–192.CrossRefPubMedGoogle Scholar
  23. Gabbott, P. L., Warner, T. A., Jays, P. R., Salway, P., & Busby, S. J. (2005). Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers. The Journal of Comparative Neurology, 492, 145–177.CrossRefPubMedGoogle Scholar
  24. Ghods-Sharifi, S., Haluk, D. M., & Floresco, S. B. (2008). Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning. Neurobiology of Learning and Memory, 89, 567–573.CrossRefPubMedGoogle Scholar
  25. Hallock, H. L., Arreola, A. C., Shaw, C. L., & Griffin, A. L. (2013). Dissociable roles of the dorsal striatum and dorsal hippocampus in conditional discrimination and spatial alternation T-maze tasks. Neurobiology of Learning and Memory, 100, 108–116.CrossRefPubMedGoogle Scholar
  26. Heidbreder, C. A., & Groenewegen, H. J. (2003). The medial prefrontal cortex in the rat: Evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neuroscience & Biobehavioral Reviews, 27, 555-579.CrossRefGoogle Scholar
  27. Hikosaka O., Isoda M. (2010). Switching from automatic to controlled behavior: Cortico-basal ganglia mechanisms. Trends in Cognitive Sciences, 14, 154–161.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Hoover, W. B., & Vertes, R. P. (2007). Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Structure and Function, 212, 149-179.CrossRefPubMedGoogle Scholar
  29. Hyafil, A., Summerfield, C., & Koechlin, E. (2009). Two mechanisms for task switching in the prefrontal cortex. The Journal of Neuroscience: The Official Journal of the Society for ­Neuroscience, 29(16), 5135–5142.CrossRefGoogle Scholar
  30. Isoda, M., & Hikosaka, O. (2008). Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28, 7209–7218.CrossRefGoogle Scholar
  31. Jahfari, S., Waldorp, L., van den Wildenberg, W. P. M., Scholte, H. S., Ridderinkhof, K. R., & Forstmann, B. U. (2011). Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia ­pathways during response inhibition. Journal of Neuroscience, 31(18), 6891–6899.CrossRefPubMedGoogle Scholar
  32. Kehagia, A. A., Murray, G. K., & Robbins, T. W. (2010). Learning and cognitive flexibility: Frontostriatal function and monoaminergic modulation. Current Opinion in Neurobiology, 20(2), 199–204.CrossRefPubMedGoogle Scholar
  33. Kesner, R. P. (2000). Subregional analysis of mnemonic functions of the prefrontal cortex in the rat. Psychobiology, 28, 219–222.Google Scholar
  34. Kesner, R. P. (2009). Tapestry of memory. Behavioral Neuroscience, 123, 1–13.CrossRefPubMedGoogle Scholar
  35. Kesner, R. P., & Churchwell, J. C. (2011). An analysis of rat prefrontal cortex in mediating executive function. Neurobiology of Learning and Memory, 96, 417–431.CrossRefPubMedGoogle Scholar
  36. Kesner, R. P., & DiMattia, B. V. (1987). Neurobiology of an attribute model of memory. In A. R. Morrison & A. N. Epstein (Eds.), Progress in psychobiology and physiological psychology (pp. 207–277). New York: Academic.Google Scholar
  37. Kesner, R. P., Hunt, M. E., Williams, J. M., & Long, J. M. (1996). Prefrontal cortex and working memory for spatial response, spatial location and visual object information in the rat. Cerebral Cortex, 6, 311–318.CrossRefPubMedGoogle Scholar
  38. Kim, J., & Ragozzino, M. E. (2005). The involvement of the orbitofrontal cortex in learning under changing task contingencies. Neurobiology of Learning and Memory, 83, 125–133.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Kim, H., Sul, J. H., Huh, N., Lee, D., & Jung, M. W. (2009). Role of striatum in updating values of chosen actions. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29, 14701–14712.CrossRefGoogle Scholar
  40. Kim, H., Lee, D., & Jung, M. W. (2013). Signals for previous goal choice persist in the dorsomedial, but not dorsolateral striatum of rats. The Journal of Neuroscience, 33, 52–63.CrossRefPubMedGoogle Scholar
  41. Konishi, S., Chikazoe, J., Jimura, K., Asari, T., & Miyashita, Y. (2005). Neural mechanism in ­anterior prefrontal cortex for inhibition of prolonged set interference. Proceedings of the ­National Academy of Sciences of the United States of America, 102(35), 12584–12588.Google Scholar
  42. Leenaars, C. H., Joosten, R. N., Zwart, A., Sandberg, H., Ruimschotel, E., Hanegraaf, M. A., ­Dematteis, M., Feenstra, M. G., & van Someren E. J. (2012). Switch-task performance in rats is disturbed by 12 h of sleep deprivation but not by 12 h of sleep fragmentation. Sleep, 35, 211.PubMedCentralPubMedGoogle Scholar
  43. Lindgren, H. S., Wickens, R., Tait, D. S., Brown, V. J., & Dunnett, S. B. (2013). Lesions of the dorsomedial striatum impair formation of attentional set in rats. Neuropharmacology, 71, 148–153.CrossRefPubMedGoogle Scholar
  44. Magill, P. J., Sharott, A., Bolam, J. P., & Brown, P. (2006). Delayed synchronization of activity in cortex and subthalamic nucleus following cortical stimulation in the rat. The Journal of Physiology, 574(3), 929–946.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Mailly, P., Aliane, V., Groenewegen, H. J., Haber, S. N., & Deniau, J. M. (2013). The rat prefrontostriatal system analyzed in 3D: Evidence for multiple interacting functional units. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 33, 5718–5727.CrossRefGoogle Scholar
  46. Mathai, A., & Smith, Y. (2011). The corticostriatal and corticosubthalamic pathways: two entries, one target. So what? Frontiers in Systems Neuroscience 5.Google Scholar
  47. Maurice, N., Deniau, J. M., Glowinski, J., & Thierry, A. M. (1998). Relationships between the prefrontal cortex and the basal ganglia in the rat: Physiology of the corticosubthalamic circuits. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(22), 9539–9546.Google Scholar
  48. Maurice, N., Deniau, J. M., Glowinski, J., & Thierry, A. M. (1999). Relationships between the prefrontal cortex and the basal ganglia in the rat: Physiology of the cortico-nigral circuits. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 19, 4674–4681.Google Scholar
  49. McAlonan, K., & Brown, V. J. (2003). Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behavioural Brain Research, 146, 97–103.CrossRefPubMedGoogle Scholar
  50. Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., & Hasegawa, N. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. ­Journal of Neurophysiology, 84(1), 289–300.PubMedGoogle Scholar
  51. Narayanan, N. S., & Laubach, M. (2006). Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex. Neuron, 52(5), 921–931.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Narayanan, N. S., & Laubach, M. (2009). Delay activity in rodent frontal cortex during a simple reaction time task. Journal of Neurophysiology, 101(6), 2859–2871.PubMedCentralCrossRefPubMedGoogle Scholar
  53. Palencia, C. A., & Ragozzino, M. E. (2004). The influence of NMDA receptors in the dorsomedial striatum on response reversal learning. Neurobiology of Learning and Memory, 82, 81–89.CrossRefPubMedGoogle Scholar
  54. Palencia, C. A., & Ragozzino, M. E. (2005). The contribution of NMDA receptors in the dorsolateral striatum to egocentric response learning. Behavioral Neuroscience, 119, 953–960.CrossRefPubMedGoogle Scholar
  55. Pisa, M., & Cyr, J. (1990). Regionally selective roles of the rat’s striatum in modality-specific discrimination learning and forelimb reaching. Behavioural Brain Research, 37, 281–292.CrossRefPubMedGoogle Scholar
  56. Ragozzino, M. E. (2002). The effects of dopamine D(1) receptor blockade in the prelimbic-infralimbic areas on behavioral flexibility. Learning & Memory (Cold Spring Harbor, N. Y.), 9, 18–28.CrossRefGoogle Scholar
  57. Ragozzino, M. E. (2007). The contribution of the medial prefrontal cortex, orbitofrontal ­cortex, and dorsomedial striatum to behavioral flexibility. Annals of the New York Academy of ­Sciences, 1121, 355–375.CrossRefPubMedGoogle Scholar
  58. Ragozzino, M. E., & Choi, D. (2004). Dynamic changes in acetylcholine output in the medial striatum during place reversal learning. Learning & Memory (Cold Spring Harbor, N. Y.), 11, 70–77.CrossRefGoogle Scholar
  59. Ragozzino, M. E., & Kesner, R. P. (1999). The role of the agranular insular cortex in working memory for food reward value and allocentric space in rats. Behavioural Brain Research, 1, 103–112.Google Scholar
  60. Ragozzino, M. E., & Kesner, R. P. (2001). The role of rat dorsomedial prefrontal cortex in working memory for egocentric responses. Neuroscience Letters, 308, 145–148.CrossRefPubMedGoogle Scholar
  61. Ragozzino, M. E., Adams, S., & Kesner, R. P. (1998). Differential involvement of the dorsal anterior cingulate and prelimbic/infralimbic areas of the rodent prefrontal cortex in spatial working memory. Behavioral Neuroscience, 112, 293–303.CrossRefPubMedGoogle Scholar
  62. Ragozzino, M. E., Wilcox, C., Raso, M., & Kesner, R. P. (1999a). Involvement of rodent prefrontal cortex subregions in strategy switching. Behavioral Neuroscience, 113, 32–41.CrossRefPubMedGoogle Scholar
  63. Ragozzino, M. E., Detrick, S., & Kesner, R. P. (1999b). Involvement of the prelimbic-infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. The Journal of Neuroscience, 19, 4585–4594.PubMedGoogle Scholar
  64. Ragozzino, M. E., Detrick, S., & Kesner, R. P. (2002). The effects of prelimbic and infralimbic lesions on working memory for visual objects in rats. Neurobiology of Learning and Memory, 77, 29–43.CrossRefPubMedGoogle Scholar
  65. Ragozzino, M. E., Ragozzino, K. E., Mizumori, S. J., & Kesner, R. P. (2002b). Role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning. Behavioral Neuroscience, 116, 105–115.PubMedCentralCrossRefPubMedGoogle Scholar
  66. Ragozzino, M. E., Kim, J., Hassert, D., Minniti, N., & Kiang, C. (2003). The contribution of the rat prelimbic-infralimbic areas to different forms of task switching. Behavioral Neuroscience, 117, 1054–1065.CrossRefPubMedGoogle Scholar
  67. Riceberg, J. S., & Shapiro, M. L. (2012). Reward stability determines the contribution of orbitofrontal cortex to adaptive behavior. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32, 16402–16409.CrossRefGoogle Scholar
  68. Ryan, L. J., & Sanders, D. J. (1994). Subthalamic nucleus and globus pallidus lesions alter activity in nigrothalamic neurons in rats. Brain Research Bulletin, 34, 19–26.CrossRefPubMedGoogle Scholar
  69. Schoenbaum, G., Nugent, S. L., Saddoris, M. P., & Setlow, B. (2002). Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport, 13, 885–890.CrossRefPubMedGoogle Scholar
  70. Sesack, S. R., Deutch, A. Y., Roth, R. H., & Bunney, B. S. (1989). Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. The Journal of Comparative Neurology, 290, 213–242.CrossRefPubMedGoogle Scholar
  71. Spencer, J. P., & Murphy, K. P. (2000a). Bi-directional changes in synaptic plasticity induced at corticostriatal synapses in vitro. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 135, 497–503.CrossRefPubMedGoogle Scholar
  72. Stalnaker, T. A., Calhoon, G. G., Ogawa, M., Roesch, M. R., & Schoenbaum, G. (2012). Reward prediction error signaling in posterior dorsomedial striatum is action specific. The Journal of Neuroscience, 32, 10296–10305.PubMedCentralCrossRefPubMedGoogle Scholar
  73. Stefani, M. R., Groth, K., & Moghaddam, B. (2003). Glutamate receptors in the rat medial prefrontal cortex regulate set-shifting ability. Behavioral Neuroscience, 117, 728–737.CrossRefPubMedGoogle Scholar
  74. Tai, L. H., Lee, A. M., Benavidez, N., Bonci, A., & Wilbrecht, L. (2012). Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nature Neuroscience, 15, 1281–1289.PubMedCentralCrossRefPubMedGoogle Scholar
  75. Uylings, H. B., & van Eden C. G. (1990). Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Progress in Brain Research, 85, 31–62.CrossRefPubMedGoogle Scholar
  76. Vertes, R. P. (2004). Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 51, 32–58.Google Scholar
  77. Wise, S. P., Murray, E. A., & Gerfen, C. R. (1996). The frontal cortex-basal ganglia system in primates. Critical Reviews in Neurobiology, 10, 317–356.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Biological Sciences and Department of PsychologyUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of PsychologyUniversity of WashingtonSeattleUSA

Personalised recommendations