Emerging Research on Information Structures

  • Jianhua Lu
  • Xiaoming Tao
  • Ning Ge
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


In previous chapters, the information representation and processing methods from structural perspective were introduced as an effective way of alleviating the effects of inherent issues of complexity and uncertainty existing in wireless communications. It is worth noting that all these methods are derived from a bottom-up point of view, such as the principle shift from bit to structure. In this chapter, unlike the design principle of the aforementioned methods which are based on the intrinsic characteristics and the correlations of data units, ideas with content-oriented information representation are introduced. In particular, inspired by the principles of human cognition, for which a top-down hierarchical framework is likely used to learn underlying structures of an intermediate level, image and video processing schemes for wireless multimedia communications are studied with some exciting results. For example, dictionary-learning based image coding and model-based face video coding methods may be used to enable high efficiency wireless multimedia transmission. Finally, based on the structural processing perspective, an innovative computational communication architecture is introduced for future wireless communications.


Top-down framework Content-oriented information representation Dictionary learning Model based video coding Computational communication 


  1. 1.
    J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman, “How to grow a mind: Statistics, structure, and abstraction,” Science, vol. 331, no. 6022, pp. 1279–1285, 2011.Google Scholar
  2. 2.
    D. Marpe, “The H.264/MPEG4 advanced video coding standard and its applications,” in IEEE Communications Magazine, vol. 44, no. 8, pp. 134–143, Aug. 2006.Google Scholar
  3. 3.
    ISO/IEC 15444-1, “JPEG 2000 Part I Final Committee Draft Version 1.0”, 2000.Google Scholar
  4. 4.
    R. Rubinstein, “Dictionaries for Sparse Representation Modeling,” Proc. IEEE, vol. 98, no. 6, pp. 1045–1057, Jun. 2010.Google Scholar
  5. 5.
    Y. Sun, X. Tao, Y. Li, and J. Lu, “Dictionary learning for image coding based on multi-sample sparse representation,” IEEE Trans. Circ. Syst. Video Technol., vol. 24, no. 11, pp. 2004–2010, Apr. 2014.Google Scholar
  6. 6.
    Y. Sun, M. Xu, X. Tao, and J. Lu, “Online dictionary learning based intra-frame video coding via sparse representations,” in Proc. WPMC’12, pp. 16–20, Sep. 2012.Google Scholar
  7. 7.
    Y. Sun, M. Xu, X. Tao, and J. Lu, “Online Dictionary Learning Based Intra-frame Video Coding,” Springer Wireless Personal Communications, vol. 74, no. 4, pp. 1281–1295, 2014.Google Scholar
  8. 8.
    M. Aharon, and M. Elad, “K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation,” IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.Google Scholar
  9. 9.
    J. Mairal, and F. Bach, “Online Learning for Matrix Factorization and Sparse Coding,” Journal of Machine Learning Research, vol. 11, pp. 19–60, 2010.Google Scholar
  10. 10.
    Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.Google Scholar
  11. 11.
    Cisco Systems, Cisco TelePresence Product Catalog, 2013. [Online]. Avialable: [Accessed Apr. 15, 2014].
  12. 12.
    Aizawa, Kiyoharu and Huang, Thomas S, “Model-based image coding advanced video coding techniques for very low bit-rate applications,” Proceedings of the IEEE, vol. 83, no. 2, pp. 259–271, 1995.CrossRefGoogle Scholar
  13. 13.
    J. D. Weiland, M. S. Humayun, “Visual prosthesis,” Proc. IEEE, vol. 96, no 7, pp. 1076–1084, July 2008.Google Scholar
  14. 14.
    R. Gross, I. Matthews, and S. Baker, “Generic vs. person specific active appearance models,” Image Vis. Comput., vol. 23, no. 12, pp. 1080–1093, Nov. 2005.Google Scholar
  15. 15.
    I. T. Jolliffe, Principal Component Analysis, Series: Springer Series in Statistics, 2nd ed., Springer, NY, 2002.Google Scholar
  16. 16.
    J. M. Saragih, S. Lucey, and J. F. Cohn, “Deformable Model Fitting by Regularized Landmark Mean-Shift,” Int. J. Comput. Vis., vol. 91, no. 2, pp. 200–215, Sep. 2011.Google Scholar
  17. 17.
    L. S. Karlsson, and M. Sjostrom, “Improved ROI video coding using variable Gaussian pre-filters and variance in intensity,” in Proc. IEEE ICIP’05, Genoa, Italy, pp. 313–316, Sep. 2005.Google Scholar
  18. 18.
    P. van Beek, A. M. Tekalp, N. Zhuang, and I. Celasun, “Hierarchical 2-D Mesh Representation, Tracking, and Compression for Object-based Video,” in IEEE Trans. Circ. Syst. Video Technol., vol. 9, no. 2, pp. 353–369, Mar. 1999.Google Scholar
  19. 19.
    H. Xin, H. Ai, H. Chao, and D. Tretter, “Human Head-shoulder Segmentation,” in Proc. IEEE FG’11, Santa Barbara, USA, pp. 227–232, Mar. 2011.Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Jianhua Lu
    • 1
  • Xiaoming Tao
    • 1
  • Ning Ge
    • 1
  1. 1.Department of Electronic EngineeringTsinghua UniversityBeijingChina

Personalised recommendations