Advertisement

The Qualitative and Quantitative Support Method for Capability Based Planning of Armed Forces Development

  • Andrzej Najgebauer
  • Ryszard Antkiewicz
  • Mariusz Chmielewski
  • Michał Dyk
  • Rafał Kasprzyk
  • Dariusz Pierzchała
  • Jarosław Rulka
  • Zbigniew TarapataEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9012)

Abstract

The paper introduces and presents the model and method of Capability Based Planning in the area of the Armed Forces Development. The model of development contains: the mathematical description of different capabilities’ assessment, the problem’s formulation of assessment of required, existing and lacking capabilities. The method of allocation of the capabilities to response on the threats scenarios is the next step explained in the paper. The verification method of allocated capabilities and their synergy - as simulations of possible conflicts of the fixed sides equipped with the capabilities - is proposed. Finally, the set of analytical and simulation tools for CBP is discussed.

Keywords

Capability based planning Allocation of capability Conflict simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antkiewicz, R., Najgebauer, A., Rulka, J., Tarapata, Z., Wantoch-Rekowski, R.: Knowledge-based pattern recognition method and tool to support mission planning and simulation. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 478–487. Springer, Heidelberg (2011)Google Scholar
  2. 2.
    Davis, P.K.: Analytic Architecture for Capabilities-Based Planning. Mission-System Analysis, and Transformation, RAND MR-1513-OSD (2002)Google Scholar
  3. 3.
    Pierzchała, D., Dyk, M., Szydłowski, A.: Distributed military simulation augmented by computational collective intelligence. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 399–408. Springer, Heidelberg (2011)Google Scholar
  4. 4.
    Fauske, M.F., Vestli, M., Glærum, S.: Optimization Model for Robust Acquisition Decisions in the Norwegian Armed Forces. Interfaces 43(4), 352–359 (2013)CrossRefGoogle Scholar
  5. 5.
    Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization (26), 369–395 (2004)Google Scholar
  6. 6.
    NATO, The Use of Scenarios in Long Term Defence Planning. http://www.plausiblefutures.com/55074
  7. 7.
    NATO Research and Technology Board: Panel on Studies, Analysis and Simulation (SAS), Handbook in Long Term Defence Planning (2001)Google Scholar
  8. 8.
    Pierzchała, D.: Application of Ontology and Rough Set Theory to Information Sharing in Multi-resolution Combat M&S. Studies in Computational Intelligence 551, 193–203 (2014)CrossRefGoogle Scholar
  9. 9.
    Tagarev, T., Tsachev, T., Zhivkov, N.: Formalizing the Optimization Problem in Long-term Capability Planning. Information & Security 23(1), 99–114 (2009)Google Scholar
  10. 10.
    Xiong, J., Yang, K., Liu, J., Zhao, Q., Chen, Y.: A two-stage preference-based evolutionary multi-objective approach for capability planning problems. Knowledge-Based Systems (31), 128–139 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andrzej Najgebauer
    • 1
  • Ryszard Antkiewicz
    • 1
  • Mariusz Chmielewski
    • 1
  • Michał Dyk
    • 1
  • Rafał Kasprzyk
    • 1
  • Dariusz Pierzchała
    • 1
  • Jarosław Rulka
    • 1
  • Zbigniew Tarapata
    • 1
    Email author
  1. 1.Cybernetics FacultyMilitary University of TechnologyWarsawPoland

Personalised recommendations