Skip to main content

Numerical Macroscale Modeling of Solidification

  • Chapter
  • First Online:

Abstract

From the analysis of solidification based on the energy transport equation presented in the earlier chapter, it was seen that analytical solutions of this equation are not always available. Significant simplifying assumptions must be used, assumptions that are many times debilitating to the point that the solution is of little engineering interest. Fortunately, with the development of numerical methods and their application to the solution of partial differential equations, the most complicated equations can be solved numerically. Numerical solutions rely on replacing the continuous information contained in the exact solution of the differential equation with discrete values. Discretization equations are derived from the governing differential equation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bäckerud L, Chai G, Tamminen J (1990) Solidification Characteristics of Aluminum Alloys: Volume 2, Foundry Alloys. AFS/Skanaluminimu, Des Plaines, Illinois

    Google Scholar 

  • Beech J, Barkhudarov M, Chang K, Chin SB (1998) in: Thomas BG, Beckermann C (eds) Modeling of Casting Welding and Advanced Solidification Processes VIII. The Minerals, Metals and Materials Soc., Warrendale. PA, p 1071

    Google Scholar 

  • Bennon WD, Incropera FP (1987) Int. J. Heat Mass Transfer 30:2161,2171

    Google Scholar 

  • Bishop HF, Myskowski ET, Pellini WS (1955) AFS Trans. 63:271

    Google Scholar 

  • Boileau JM, Allison JE (2003) Met. Mater. Trans. 34A:1807

    Google Scholar 

  • Bor HY, Hsu C, We CN, (2004) Materials Chemistry and Physics 84:284

    Google Scholar 

  • Bounds S, Moran G, Pericleous K, Cross M, Croft TN (2000) Metall. Mater. Trans. B 31B:515

    Google Scholar 

  • Caine JB (1950) AFS Trans. 58:261

    Google Scholar 

  • Carman PC (1937) Trans. Inst. Chem. Eng. 15:150

    Google Scholar 

  • Chang S (1994) Numerical Modeling of Micro- and Macro-Segregation in Casting Alloys. PhD Disseratation, The Univ. of Alabama, Tuscaloosa

    Google Scholar 

  • Chang S, Stefanescu DM (1996) Metall. Mater. Trans. 27A:2708

    Google Scholar 

  • Chen QZ, Kong YH, Jones CN, Knowles DM (2004) Scripta Materialia 51:155

    Google Scholar 

  • Chiesa F, Mammen M, Smiley LE (1998) AFS Trans. 106:149

    Google Scholar 

  • Chiesa F, Mammen J (1999) AFS Trans. 107:103

    Google Scholar 

  • Chvorinov N (1940) Giesserei 27:201

    Google Scholar 

  • Diao QZ, Tsai HL (1993) Metall. Trans. 24A:963

    Google Scholar 

  • Fellicelli SD, Heinrich JC, Poirier DR (1991) Metall. Trans. 22B:847

    Google Scholar 

  • Flemings MC, Nereo GE (1967) Trans. AIME 239:1449

    Google Scholar 

  • Hansen PN, Sahm PR, and Flender E (1993) Trans. AFS 101:443

    Google Scholar 

  • Hansen PN, Sahm PR (1998) in: Giamei AF, Abbaschian GJ (eds) Modeling of Casting and Welding Processes IV. TMS, Warrendale, PA, p 33

    Google Scholar 

  • Henzel JG, Keverian J (1965) J. of Metals 17:561

    Google Scholar 

  • Hirt CW, Nichols BD (1981) J. Computational Physics 39:201

    Google Scholar 

  • Huang H, Suri VK, EL-Kaddah N, Berry JT (1993) in: Piwonka TS, Voller V, Katgerman L (eds) Modeling of Casting, Welding and Advanced Solidification Processes VI. TMS, Warrendale, Pa, p 219

    Google Scholar 

  • Hummer R (1988) Cast Metals 1:62

    Google Scholar 

  • Imafuku I, Chijiiwa K (1983) AFS Trans. 91:527

    Google Scholar 

  • Jiarong LI, Liu B, Xiang H, Tong H, Xie Y (1995), in: Proceedings of the 61st World Foundry Congress, International Academic Publishers, Beijing China, p 41

    Google Scholar 

  • Kato H, Cahoon JR (1985) Metall. Trans. 16A:579

    Google Scholar 

  • Mehrabian R, Keane M, Flemings MC (1970) Metall. Trans. 1:1209

    Google Scholar 

  • Metzner AB (1985) Rheology of suspensions in polymeric liquids, 29:739

    Google Scholar 

  • Laurent V, Rigaut C (1992) AFS Trans. 100:399

    Google Scholar 

  • Lee PD, Chirazi A, See D (2001) J. Light Metals, 1:15

    Google Scholar 

  • Lee YW, Chang E, Chieu CF (1990) Met. Trans. B 21B:715

    Google Scholar 

  • Lei CS, Lee EW, Frazier WE (1998) in: Tiryakioglu M, Campbell J (eds) Advances in Aluminum Casting Technology. ASM, Materials Park, OH p 113

    Google Scholar 

  • Lesoult G, Sella S (1988) Solid State Phenom. 3-4:167-178

    Google Scholar 

  • Niyama E, Uchida T, Morikawa M, Saito S (1982) AFS Cast Metals Research J. 7:52

    Google Scholar 

  • Ohnaka I (1986) in: Fredriksson H (ed) State of the Art of Computer Simulation of Casting and Solidification Processes. Les Editions de Physique, Les Ulis, France p 211

    Google Scholar 

  • Ohnaka I (1993) in: Piwonka TS et al. (eds) Modeling of Casting, Welding and Advanced Solidification Processes VI. TMS, Warrendale Pa p 337

    Google Scholar 

  • Oldenburg CM, Spera FJ (1992) Numer. Heat Transfer B 21:217

    Google Scholar 

  • Özisic MN (1994) Finite Difference Methods in Heat Transfer. CRC Press

    Google Scholar 

  • Patankar SV (1980) Numerical Heat Transfer and Fluid Flow. Hemisphere Publ. Corp., New York

    Google Scholar 

  • Pellini WS (1953) Trans. AFS 61:61

    Google Scholar 

  • Pham QT (1986) Int. J. of Heat & Mass Transf. 29:285

    Google Scholar 

  • Piwonka TS (2000) in: Abbaschian R, Brody H, Mortensen A (eds) Proc. Merton C. Flemings Symposium on Solidification and Materials Processing. TMS, Warrendale Pa., p 363

    Google Scholar 

  • Piwonka TS, Flemings MC (1966) Trans. AIME, 236:1157

    Google Scholar 

  • Poirier DR, Nandapurkar PJ, Ganesan S (1991) Metall. Trans. 22B:1129

    Google Scholar 

  • Poirier DR, Geiger GH (1994) Transport Phenomena in Materials Processing. TMS Minerals Metals Materials, Warrendale Pa. pp 571-598

    Google Scholar 

  • Poirier DR (1998) in: Thomas BG, Beckermann C (eds) Modeling of Casting, Welding and Advanced Solidification Processes VII. TMS, Warrendale, PA p 837

    Google Scholar 

  • Raihle CM, Fredriksson H (1994) Metall. Mater. Trans. B 25B:123-133.

    Google Scholar 

  • Sahm PR (1991) in: Kim C, Kim CW (eds) Numerical Simulation of Casting Solidification in Automotive Applications. TMS, Warrendale PA p 45

    Google Scholar 

  • Schneider MC, Beckermann C (1995) Metall. Trans. 26A:2373

    Google Scholar 

  • Sigworth GK, Wang C (1993) Met. Trans. B, 24B:365

    Google Scholar 

  • Spittle JA, Almeshhedani M, Brown SGR (1995) Cast Metals 7:51

    Google Scholar 

  • Suri VK, Paul AJ (1993) Trans. AFS 144:949

    Google Scholar 

  • Suri VK, Paul AJ, EL-Kaddah N, Berry JT (1994) Trans. AFS 138:861

    Google Scholar 

  • Suri VK, Yu KO (2002) in: Yu KO (ed) Modeling for Casting and Solidification Processing. Marcel Dekker, NY, p 95

    Google Scholar 

  • Stefanescu DM, Giese SR, Piwonka TS, Lane A (1996) AFS Trans. 104:1233

    Google Scholar 

  • Stefanescu DM, Piwonka TS (1996) in: Applications of Computers, Robotics and Automation to the Foundry Industry. Proc. Technical Forum, 62nd World Foundry Congress, Philadelphia, PA, CIATF, American Foundrymen's Soc. p 62

    Google Scholar 

  • Stefanescu DM (2002) Science and Engineering of Casting Solidification. Kluwer Academic/Plenum Publishers, NY

    Google Scholar 

  • Stefanescu DM (2005) Int. J. Cast Metals Res. 18(3):129-143

    Google Scholar 

  • Tynelius K, Major JF, Apelian D (1993) Trans. AFS 101:401

    Google Scholar 

  • Upadhya GK, Paul AJ (1992) Trans. AFS 100:925

    Google Scholar 

  • Van Doormaal JP, Raithby GD (1984) Numer. Heat Transfer, 7:147

    Google Scholar 

  • Vannier I, Combeau H, Lesoult G (1993) Mater. Sci. Eng. A173:317-321

    Google Scholar 

  • Voller VR, Brent AD, Prakash C (1989) Int. J. Heat Mass Transf. 32:1718-1731

    Google Scholar 

  • Wallace JF, Evans EB (1958) AFS Trans. 66:49

    Google Scholar 

  • Walther WD, Adams CM, Taylor HF (1956) Trans. AFS 64:658

    Google Scholar 

  • Weins MJ, Bottom JLS, Flinn RA (1964) Trans. AFS 72:832

    Google Scholar 

  • Winterscheidt DL, Huang GX (2002) in: Yu KO (ed) Modeling for Casting and Solidification Processing. Marcel Dekker, NY pp 17-54

    Google Scholar 

  • Yong MS, Clegg AJ (2004) J. of Materials Processing Technology 145:134

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doru Michael Stefanescu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stefanescu, D. (2015). Numerical Macroscale Modeling of Solidification. In: Science and Engineering of Casting Solidification. Springer, Cham. https://doi.org/10.1007/978-3-319-15693-4_17

Download citation

Publish with us

Policies and ethics