Skip to main content

Structural Insight into Transition Metal Oxide Containing Glasses by Molecular Dynamic Simulations

  • Chapter
  • First Online:
Molecular Dynamics Simulations of Disordered Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 215))

Abstract

In the last years, glass research focused particular attention on transition metal oxide containing systems for semi-conductive applications, for instance glasses for solid-state devices and secondary batteries. In glass matrices, transition metal ions show multiple oxidation states that lead to peculiar structures and to highly complex systems, which produce interesting optical, electrical and magnetic properties. Computational methods have been largely employed as complementary tool to experimental techniques, in order to improve the knowledge on the materials and their performances. In this work, Molecular Dynamic (MD) simulations have been performed on a series of alkali vanado-phosphate glasses in order to gain deep comprehension of the glass structure. The short and medium range order of the \(\mathrm{V}^{4+}\) and the \(\mathrm{V}^{5+}\) sites in terms of coordination, pair distribution function, V–O–V linkages, bridging and non-bridging oxygen distributions were calculated and discussed. Finally, the comparison between MD and experimental results shows a very good agreement allowing the validation of the computational model and highlights the correlations between the structure and the conduction mechanism in these glasses. This allows enriching the know-how on these glass systems that result still ambiguous until now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Mercier, G. Palavit, L. Montagne, C. Follet-Houttemane, A survey of transition-metal-containing phosphate glasses. C. R. Chim. 5(11), 693–703 (2002)

    Google Scholar 

  2. L.E. Bausa, F. Jaque, J. Garcia Sole, A. Duran, Photoluminescence of Ti\(^{3+}\) in P\(_{2}\)O\(_{5}\)-Na\(_{2}\)O-Al\(_{2}\)O\(_{3}\) glass. J. Mater. Sci. 23(6), 1921–1922 (1988)

    Google Scholar 

  3. M. Jamnick, P. Znfigik, D. Tunega, M.D. Ingram, Glass formation and structure in the system Cu\(_{2}\)O-P\(_{2}\)O\(_{5}\)-MoO\(_{3}\). J. Non-Cryst. Solids 185, 151–158 (1995)

    Google Scholar 

  4. N. Satyanarayana, G. Govindaraj, A. Karthikeyan, Effects of differing ratios of network modifier (Ag\(_{2}\)O) to network formers (MoO\(_{3}\) + V2O\(_{5})\) and dopant salt (AgI) concentrations in silver-based superionic glassy compounds. J. Non-Cryst. Solids 136(3), 219–226 (1991)

    Google Scholar 

  5. U. Selvaraj, K.J. Rao, Characterization studies of molybdophosphate glasses and a model of structural defects. J. Non-Cryst. Solids 72(2–3), 315–334 (1985)

    Google Scholar 

  6. T. Minami, K. Imazawa, M. Tanaka, Formation region and characterization of superionic conducting glasses in the systems AgI-Ag\(_{2}\)O-M\(_{\rm {x}}\)O\(_{\rm {y}}\). J. Non-Cryst. Solids 42(1–3), 469–476 (1980)

    Google Scholar 

  7. S.-H. Kim, T. Yoko, Nonlinear optical properties of TeO\(_{2}\)-based glasses: MO\(_{\rm {x}}\)-TeO\(_{2}\) (M = Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses. J. Am. Ceram. Soc. 78(4), 1061–1065 (1995)

    Google Scholar 

  8. P. Boolchand, in Insulating and Semiconducting Glasses, vol. 17 (World Scientific Publishing Co. Pte. Ltd., Singapore, 2000)

    Google Scholar 

  9. S. Bhattacharya, A. Ghosh, Polaron transport in semiconducting silver vanadate glasses. Phys. Rev. B 66(13), 132203 (2002)

    Google Scholar 

  10. G.D. Khattak, N. Tabet, L.E. Wenger, Structural properties of glasses in the series (SrO)\(_{x}\)(V\(_{2}\)O\(_{5})\) \(_{1-x}\), (SrO)\(_{0.5-y}\)(B\(_{2}\)O\(_{3})_{y}\)(V\(_{2}\)O\(_{5})_{0.5}\), and (SrO)\(_{0.2}\)(B2O3)\(_{z}\)(V2O5)\(_{0.8-z}\). Phys. Rev. B. Condens. Matter Mater. Phys. 72(10), 104203.1–104203.12 (2005)

    Google Scholar 

  11. M. Faiz, A. Mekki, B.S. Mun, Z. Hussain, Investigation of vanadium-sodium silicate glasses using XANES spectroscopy. J. Electron Spectros. Relat. Phenom. 154(3), 60–62 (2007)

    Google Scholar 

  12. A. Mekki, G.D. Khattak, D. Holland, M. Chinkhota, L.E. Wenger, Structure and magnetic properties of vanadium-sodium silicate glasses. J. Non-Cryst. Solids 318(1–2), 193–201 (2003)

    Google Scholar 

  13. C. Mugoni, M. Montorsi, C. Siligardi, H. Jain, Electrical conductivity of copper lithium phosphate glasses. J. Non-Cryst. Solids 383, 137–140 (2014)

    Google Scholar 

  14. N.F. Mott, in Metal Insulator Transistor (Taylor & Francis, New York, 1990)

    Google Scholar 

  15. N.F. Mott, Introductory talk; Conduction in non-crystalline materials. J. Non-Cryst. Solids 8–10, 1–18 (1972)

    Google Scholar 

  16. G. Ori, M. Montorsi, A. Pedone, C. Siligardi, Insight into the structure of vanadium containing glasses: a molecular dynamics study. J. Non-Cryst. Solids 357(14), 2571–2579 (2011)

    Google Scholar 

  17. H.M.M. Moawad, H. Jain, R. El-Mallawany, T. Ramadan, M. El-Sharbiny, Electrical conductivity of silver vanadium tellurite glasses. J. Am. Ceram. Soc. 85(11), 2655–2659 (2004)

    Google Scholar 

  18. H.M.M. Moawad, H. Jain, R. El-Mallawany, DC conductivity of silver vanadium tellurite glasses. J. Phys. Chem. Solids 70(1), 224–233 (2009)

    Google Scholar 

  19. M.C. Ungureanu, M. Lévy, J.L. Souquet, Mixed conductivity of glasses in the P\(_{2}\)O\(_{5}\)–V\(_{2}\)O\(_{5}\)–Na\(_{2}\)O system. Ionics (Kiel) 4(3–4), 200–206 (1998)

    Google Scholar 

  20. E.E. Assem, I. Elmehasseb, Structure, magnetic, and electrical studies on vanadium phosphate glasses containing different oxides. J. Mater. Sci. 46(7), 2071–2076 (2011)

    Google Scholar 

  21. R.J. Barczyński, P. Król, L. Murawski, Ac and dc conductivities in V\(_{2}\)O\(_{5}\)–P\(_{2}\)O\(_{5}\) glasses containing alkaline ions. J. Non-Cryst. Solids 356(37–40), 1965–1967 (2010)

    Google Scholar 

  22. G.B. Devidas, T. Sankarappa, B.K. Chougule, G. Prasad, DC conductivity in single and mixed alkali vanadophosphate glasses. J. Non-Cryst. Solids 353(4), 426–434 (2007)

    Google Scholar 

  23. R.V.S.S.N. Ravikumar, A.V. Chandrasekhar, L. Ramamoorthy, B.J. Reddy, Y.P. Reddy, J. Yamauchi, P.S. Rao, Spectroscopic studies of transition metal doped sodium phosphate glasses. J. Alloys Compd. 364(1–2), 176–179 (2004)

    Google Scholar 

  24. B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458(7235), 190–3 (2009)

    Google Scholar 

  25. R.K. Brow, Review: the structure of simple phosphate glasses. J. Non-Cryst. Solids 263–264, 1–28 (2000)

    Google Scholar 

  26. C.J. Quinn, G.H. Bell, J.E. Dickinson, in Proceedings of the XVIth International Congress on Glass, vol. 4 (1992), p. 79

    Google Scholar 

  27. D.E. Day, Z. Wu, C.S. Ray, P. Hrma, Chemically durable iron phosphate glass wasteforms. J. Non-Cryst. Solids 241(1), 1–12 (1998)

    Google Scholar 

  28. J. Du, Y. Xiang, Effect of strontium substitution on the structure, ionic diffusion and dynamic properties of 45S5 bioactive glasses. J. Non-Cryst. Solids 358(8), 1059–1071 (2012)

    Google Scholar 

  29. C. Mercier, C. Follet-Houttemane, A. Pardini, B. Revel, Influence of P\(_{2}\)O\(_{5}\) content on the structure of SiO\(_{2}\)–Na\(_{2}\)O–CaO–P\(_{2}\)O\(_{5}\) bioglasses by \(^{29}\)Si and \(^{31}\)P MAS-NMR. J. Non-Cryst. Solids 357(24), 3901–3909 (2011)

    Google Scholar 

  30. J. Fu, Fast Li\(^{+}\) ion conduction in Li\(_{2}\)O–(Al\(_{2}\)O\(_{3}\) Ga\(_{22}\)O\(_{3})\)–TiO\(_{2}\)–P\(_{2}\)O\(_{5}\) glass-ceramics. J. Mater. Sci. 33(6), 1549–1553 (1998)

    Google Scholar 

  31. J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, J.D. Robertson, Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 53–56, 647–654 (1992)

    Google Scholar 

  32. J.R. Van Wazer, Phosphorus and its compounds Vol. 1. Interscience 73(15) (1958)

    Google Scholar 

  33. Y. Abe, in Topics in Phosphorus Chemistry, vol. 11, vol. 14, no. 3 (Wiley, New York, 1983)

    Google Scholar 

  34. S.W. Martin, Review of the structures of phosphate glasses. Eur. J. Solid State Inorg. Chem. 28, 163–205 (1991)

    Google Scholar 

  35. F. Liebau, in Structure and Bonding in Crystals II (Academic Probation, New York, 1981), p. 197

    Google Scholar 

  36. E. Metwalli, M. Karabulut, D.L. Sidebottom, M.M. Morsi, R.K. Brow, Properties and structure of copper ultraphosphate glasses. J. Non-Cryst. Solids 344(3), 128–134 (2004)

    Google Scholar 

  37. J.J. Hudgens, R.K. Brow, D.R. Tallant, S.W. Martin, Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses. J. Non-Cryst. Solids 223(1–2), 21–31 (1998)

    Google Scholar 

  38. U. Hoppe, G. Walter, R. Kranold, D. Stachel, Structural specifics of phosphate glasses probed by diffraction methods: a review. J. Non-Cryst. Solids 263–264, 29–47 (2000)

    Google Scholar 

  39. J.J. Hudgens, S.W. Martin, Glass transition and infrared spectra of low-alkali, anhydrous lithium phosphate glasses. J. Am. Ceram. Soc. 76(7), 1691–1696 (1993)

    Google Scholar 

  40. P. Losso, B. Schnabel, C. Jäger, U. Sternberg, D. Stachel, D.O. Smith, \(^{31}\)P NMR investigations of binary alkaline earth phosphate glasses of ultra phosphate composition. J. Non-Cryst. Solids 143, 265–273 (1992)

    Google Scholar 

  41. T.M. Alam, R.K. Brow, Local structure and connectivity in lithium phosphate glasses: a solid-state \(^{31}\)P MAS NMR and 2D exchange investigation. J. Non-Cryst. Solids 223(1–2), 1–20 (1998)

    Google Scholar 

  42. G.K. Marasinghe, M. Karabulut, C.S. Ray, D.E. Day, M.G. Shumsky, W.B. Yelon, C.H. Booth, P.G. Allen, D.K. Shuh, Structural features of iron phosphate glasses. J. Non-Cryst. Solids 222, 144–152 (1997)

    Google Scholar 

  43. D. Bowron, G. Saunders, R. Newport, EXAFS studies of rare-earth metaphosphate glasses. Phys. Rev. B 53, 5268–5275 (1996)

    Google Scholar 

  44. R.K. Brow, R.J. Kirkpatrick, G.L. Turner, The short range structure of sodium phosphate glasses I. MAS NMR studies. J. Non-Cryst. Solids 116(1), 39–45 (1990)

    Google Scholar 

  45. H.S. Liu, T.S. Chin, Low melting PbO-ZnO-P\(_{2}\)O\(_{5}\) glasses. Part 2. A structural study by Raman spectroscopy and MAS-NMR. Phys. Chem. Glas. 38(3), 123–131 (1997)

    Google Scholar 

  46. J. Swenson, A. Matic, A. Brodin, Structure of mixed alkali phosphate glasses by neutron diffraction and Raman spectroscopy. Phys. Rev. B 58(17), 331–337 (1998)

    Google Scholar 

  47. U. Hoppe, N.P. Wyckoff, M.L. Schmitt, R.K. Brow, A. Schöps, A.C. Hannon, Structure of V\(_{2}\)O\(_{5}\)-P\(_{2}\)O\(_{5}\) glasses by X-ray and neutron diffraction. J. Non-Cryst. Solids 358(2), 328–336 (2012)

    Google Scholar 

  48. R. Majumdar, D. Lahiri, Redox equilibrium and spectral absorption of some colouring oxides in sodium metaphosphate glass. Trans. Ind. Ceram. Soc. XXXI(5) (1972)

    Google Scholar 

  49. G. Calas, J. Petiau, Structure of Non-crystalline Materials II, pp. 18–23 (Taylor & Francis, London, 1983)

    Google Scholar 

  50. G. Calas, J. Petiau, Structure of oxide glasses: spectroscopic studies of local order and crystallochemistry. Geochemical implications. Bull Miner. (1983)

    Google Scholar 

  51. K. Moringa, H. Yoshida, H. Takebe, Compositional dependence of absorption spectra of Ti\(^{3+}\) in silicate, borate, and phosphate glasses. J. Am. Ceram. Soc. 77(12), 3113–3118 (1994)

    Google Scholar 

  52. D. Ehrt, M. Leister, C. Matthai, C.C. Russel, F. Breitbarth, Determination of the redox states of vanadium in glasses and melts by different methods, in fundamentals of glass science and technology conference, (1997), pp. 204–211

    Google Scholar 

  53. T. Murata, M. Torisaka, H. Takebe, K. Morinaga, Compositional dependence of the valency state of Cr ions in oxide glasses. J. Non-Cryst. Solids 220(2–3), 139–146 (1997)

    Google Scholar 

  54. M. Karabulut, G.K. Marasinghe, C.S. Ray, D.E. Day, G.D. Waddill, C.H. Booth, P.G. Allen, J.J. Bucher, D.L. Caulder, D.K. Shuh, An investigation of the local iron environment in iron phosphate glasses having different Fe(II) concentrations. J. Non-Cryst. Solids 306(2), 182–192 (2002). Aug

    Google Scholar 

  55. O. Cozar, I. Ardelean, The local symmetry of Cu\(^{2+}\) ions in phosphate glasses. J. Non-Cryst. Solids 92(2–3), 278–281 (1987)

    Google Scholar 

  56. B.-S. Bae, M.C. Weinberg, Ultraviolet optical absorptions of semiconducting copper phosphate glasses. J. Appl. Phys. 73(11), 7760 (1993)

    Google Scholar 

  57. X. Fang, C.S. Ray, A. Moguš-Milanković, D.E. Day, Iron redox equilibrium, structure and properties of iron phosphate glasses. J. Non-Cryst. Solids 283(1–3), 162–172 (2001)

    Google Scholar 

  58. L. Murawski, R.J. Barczyński, D. Samatowicz, Electronic conductivity in Na\(_{2}\)O–FeO–P\(_{2}\)O\(_{5}\) glasses. Solid State Ionics 157(1–4), 293–298 (2003)

    Google Scholar 

  59. G. Tricot, H. Vezin, Description of the intermediate length scale structural motifs in sodium vanado-phosphate glasses by magnetic resonance spectroscopies. J. Phys. Chem. C 117(3), 1421–1427 (2013)

    Google Scholar 

  60. P. Chaurand, J. Rose, V. Briois, M. Salome, O. Proux, V. Nassif, L. Olivi, J. Susini, J.-L. Hazemann, J.-Y. Bottero, New methodological approach for the vanadium K-edge X-ray absorption near-edge structure interpretation: application to the speciation of vanadium in oxide phases from steel slag. J. Phys. Chem. B 111(19), 5101–10 (2007)

    Google Scholar 

  61. L.D. Bogomolova, M.P. Glassova, O.E. Dubatovko, S.I. Reiman, S.N. Spasibkina, The study of interactions between iron and vanadium ions in semiconducting barium-vanadate glasses doped with Fe\(_{2}\)O\(_{3}\). J. Non-Cryst. Solids 58(1), 71–89 (1983)

    Google Scholar 

  62. B.-S. Bae, M.C. Weinberg, Oxidation-reduction equilibrium in copper phosphate glass melted in air. J. Am. Ceram. Soc. 74(12), 3039–3045 (1991)

    Google Scholar 

  63. G.E. Brown, G. Calas, G.A. Waychunas, J. Petiau, X-ray absorption spectroscopy; applications in mineralogy and geochemistry. Rev. Mineral. Geochem. 18(1), 431–512 (1988)

    Google Scholar 

  64. J. Wong, F. Lytle, R. Messmer, D. Maylotte, K-edge absorption spectra of selected vanadium compounds. Phys. Rev. B 30, 5596–5610 (1984)

    Google Scholar 

  65. F. Farges, Y. Lefrère, S. Rossano, A. Berthereau, G. Calas, G.E. Brown, The effect of redox state on the local structural environment of iron in silicate glasses: a combined XAFS spectroscopy, molecular dynamics, and bond valence study. J. Non-Cryst. Solids 344(3), 176–188 (2004)

    Google Scholar 

  66. A. Musinu, G. Piccaluga, An X-ray diffraction study of the short-range order around Ni(II) Zn(II) and Cu(II) in pyrophosphate glasses. J. Non-Cryst. Solids 193, 32–35 (1995)

    Google Scholar 

  67. L. Cormier, L. Galoisy, J.-M. Delaye, D. Ghaleb, G. Calas, Short- and medium-range structural order around cations in glasses: a multidisciplinary approach. Comptes Rendus l’Académie des Sci. Ser. IV Phys. 2(2), 249–262 (2001)

    Google Scholar 

  68. R.V.S.S.N. Ravikumar, V. Rajagopal Reddy, A.V. Chandrasekhar, B.J. Reddy, Y.P. Reddy, P.S. Rao, Tetragonal site of transition metal ions doped sodium phosphate glasses. J. Alloys Compd. 337(1–2), 272–276 (2002)

    Google Scholar 

  69. L.A. Farrow, E.M. Vogel, Raman spectra of phosphate and silicate glasses doped with the cations Ti, Nb and Bi. J. Non-Cryst. Solids 143, 59–64 (1992)

    Google Scholar 

  70. O. Cozar, I. Ardelean, V. Simon, L. David, The local structure and interactions between V\(^{4+}\) ions in soda-phosphate glasses. Appl. Magn. Reson. 537, 529–537 (1999)

    Google Scholar 

  71. S. Bruni, F. Cariati, A. Corrias, P.H. Gaskell, A. Lai, A. Musinu, G. Piccaluga, Short range order of sodium-zinc, sodium-copper, and sodium-nickel pyrophosphate glasses by diffractometric and spectroscopic techniques. J. Phys. Chem. 99(41), 15229–15235 (1995)

    Google Scholar 

  72. G.D. Khattak, A. Mekki, L.E. Wenger, X-ray photoelectron spectroscopy (XPS) and magnetic susceptibility studies of vanadium phosphate glasses. J. Non-Cryst. Solids 355(43–44), 2148–2155 (2009)

    Google Scholar 

  73. A. Majjane, A. Chahine, M. Et-tabirou, B. Echchahed, T.O. Do, P.M. Breen, X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses. Mater. Chem. Phys. 143(2), 779–787 (2014)

    Google Scholar 

  74. G. Ori, C. Mugoni, G. Broglia, C. Siligardi, M. Montorsi, Short- and medium-range order structure of alkali vanado-phosphate glasses: a Molecular Dynamics study (Submitted) (2014)

    Google Scholar 

  75. K. Nagamine, T. Honma, T. Komatsu, Selective synthesis of lithium Ion-conductive \(\beta \)-LiVOPO\(_{4}\) crystals via glass-ceramic processing. J. Am. Ceram. Soc. 91(12), 3920–3925 (2008)

    Google Scholar 

  76. C. Albon, D. Muresan, R.E. Vandenberghe, S. Simon, Iron environment in calcium-soda-phosphate glasses and vitroceramics. J. Non-Cryst. Solids 354(40–41), 4603–4608 (2008)

    Google Scholar 

  77. A. Kiani, L.S. Cahill, E.A. Abou Neel, J.V. Hanna, M.E. Smith, J.C. Knowles, Physical properties and MAS-NMR studies of titanium phosphate-based glasses. Mater. Chem. Phys. 120(1), 68–74 (2010)

    Google Scholar 

  78. A. Bianconi, A. Giovannelli, I. Dovoli, S. Stizza, L. Palladino, O. Gzowski, L. Murawski, Xanes (X-ray absorption near edge structure) of V in vanadium-iron phosphate glasses. Solid State Commun. 42(8), 547–551 (1982)

    Google Scholar 

  79. G. Concas, F. Congiu, E. Manca, C. Muntoni, G. Pinna, Mössbauer spectroscopic investigation of some iron-containing sodium phosphate glasses. J. Non-Cryst. Solids 192–193, 175–178 (1995)

    Google Scholar 

  80. P.A. Bingham, E.R. Barney, Structure of iron phosphate glasses modified by alkali and alkaline earth additions: neutron and X-ray diffraction studies. J. Phys. Condens. Matter 24(17), 175403 (2012)

    Google Scholar 

  81. S. Chandra, in Superionic Solids: Principles and Applications (North-Holland, Amsterdam, 1981)

    Google Scholar 

  82. K. Singh, Ion conducting glasses for solid state electrochemical applications. Indian J. Pure Appl. Phys. 37, 266–271 (1999)

    Google Scholar 

  83. P.Y. Shih, J.Y. Ding, S.Y. Lee, \(^{31}\)P MAS-NMR and FTIR analyses on the structure of CuO-containing sodium poly- and meta-phosphate glasses. Mater. Chem. Phys. 80(2), 391–396 (2003)

    Google Scholar 

  84. A. Musinu, G. Piccaluga, G. Pinna, G. Vlaic, D. Narducci, S. Pizzini, Coordination of zinc and copper in phosphate glasses by EXAFS. J. Non-Cryst. Solids 136(3), 198–204 (1991)

    Google Scholar 

  85. R. Debnath, J. Chaudhury, S.C. Bera, Optical properties and nature of coordination of Cu\(^{+}\) ions in calcium metaphosphate glass. Phys. Status Solidi 157(2), 723–733 (1990)

    Google Scholar 

  86. B. Roling, K. Funke, Polaronic transport in vanadium phosphate glasses. J. Non-Cryst. Solids 212(1), 1–10 (1997)

    Google Scholar 

  87. N.F. Mott, Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1(1), 1–17 (1968)

    Google Scholar 

  88. N.F. Mott, Electrons in disordered structures. Adv. Phys. 16(61), 49–144 (1967)

    Google Scholar 

  89. S. Gupta, N. Khanijo, A. Mansingh, The influence of V\(^{4+}\) ion concentration on the EPR spectra of vanadate glasses. J. Non-Cryst. Solids 181(1–2), 58–63 (1995)

    Google Scholar 

  90. M. Nabavi, C. Sanchez, J. Livage, Structure and properties of amorphous V\(_{2}\)O\(_{5}\). Philos. Mag. B 63(4), 941–953 (1991)

    Google Scholar 

  91. B. Jordan, C. Calvo, Transport properties and the structure of vanadium phosphate glasses. Can. J. Phys. 55(5), 436–441 (1977)

    Google Scholar 

  92. U. Hoppe, R. Kranold, A reverse monte carlo study of the structure of vitreous V\(_{2}\)O\(_{5}\). Solid State Commun. 109(10), 625–630 (1999)

    Google Scholar 

  93. L. Murawski, R.J. Barczynski, A. Rybicka, V\(_{2}\)O\(_{5}\)–P\(_{5}\)O\(_{5}\) glass and its polaron transport properties derived from molecular dynamic simulations of structure. In dielectric and related phenomena: materials physico-chemistry, spectrometric investigations, and applications (1997), pp. 136–141

    Google Scholar 

  94. A. Mosset, P. Lecante, J. Galy, J. Livage, Structural analysis of amorphous V\(_{2}\)O\(_{5}\) by large-angle X-ray scattering. Philos. Mag. B 46(2), 137–149 (1982)

    Google Scholar 

  95. M. Duclot, J.-L. Souquet, Glassy materials for lithium batteries? electrochemical properties and devices performances. J. Power Sources 98(5631), 610–615 (2001)

    Google Scholar 

  96. H. Behzad, M.H. Hekmatshoar, M. Mirzayi, M. Azmoonfar, Activation energy and conductivity of glasses in the P\(_{2}\)O\(_{5}\)–V\(_{2}\)O\(_{5}\)–Li\(_{2}\)O system. Ionics (Kiel) 15(5), 647–650 (2009)

    Google Scholar 

  97. P. Jozwiak, J. Garbarczyk, Mixed electronic-ionic conductivity in the glasses of the LiO–VO–PO system. Solid State Ionics 176(25–28), 2163–2166 (2005). Aug

    Google Scholar 

  98. H. Takahashi, T. Karasawa, T. Sakuma, J.E. Garbarczyk, Electrical conduction in the vitreous and crystallized Li2O-V2O5-P2O5 system. Solid State Ionics 181(1–2), 27–32 (2010)

    Google Scholar 

  99. J. Garbarczyk, M. Wasiucionek, P. Jóźwiak, L. Tykarski, J. Nowiński, Studies of Li\(_{2}\)O-V\(_{2}\)O\(_{5}\)-P\(_{2}\)O\(_{5}\) glasses by DSC, EPR and impedance spectroscopy. Solid State Ionics 154–155, 367–373 (2002)

    Google Scholar 

  100. T. Sankarappa, G.B. Devidas, M. Prashant Kumar, S. Kumar, B. Vijaya Kumar, Ac conductivity studies in single and mixed alkali vanadophosphate glasses. J. Alloys Compd. 469(1–2), 576–579 (2009)

    Google Scholar 

  101. G. Lusvardi, G. Malavasi, M. Cortada, L. Menabue, M.C. Menziani, A. Pedone, U. Segre, Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation. J. Phys. Chem. B 112(40), 12730–9 (2008)

    Google Scholar 

  102. M.A. Karakassides, A. Saranti, I. Koutselas, Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. J. Non-Cryst. Solids 347(1–3), 69–79 (2004)

    Google Scholar 

  103. L. Linati, G. Lusvardi, G. Malavasi, L. Menabue, M.C. Menziani, P. Mustarelli, A. Pedone, U. Segre, Medium-range order in phospho-silicate bioactive glasses: insights from MAS-NMR spectra, chemical durability experiments and molecular dynamics simulations. J. Non-Cryst. Solids 354(2–9), 84–89 (2008)

    Google Scholar 

  104. A. Tilocca, A.N. Cormack, Structural effects of phosphorus inclusion in bioactive silicate glasses. J. Phys. Chem. B 111(51), 14256–64 (2007)

    Google Scholar 

  105. Y. Xiang, J. Du, Effect of strontium substitution on the structure of 45S5 bioglasses. Chem. Mater. 23(11), 2703–2717 (2011)

    Google Scholar 

  106. A. Tilocca, A. Cormack, N. de Leeuw, The formation of nanoscale structures in soluble phosphosilicate glasses for biomedical applications: MD simulations. Faraday Discuss. 136, 44–55 (2007)

    Google Scholar 

  107. D. Di Tommaso, R.I. Ainsworth, E. Tang, N.H. de Leeuw, Modelling the structural evolution of ternary phosphate glasses from melts to solid amorphous materials. J. Mater. Chem. B 1(38), 5054 (2013)

    Google Scholar 

  108. A. Pedone, G. Malavasi, M.C. Menziani, Computational insight into the effect of CaO/MgO substitution on the structural properties of phospho-silicate bioactive glasses. J. Phys. Chem. C 113(35), 15723–15730 (2009)

    Google Scholar 

  109. G. Malavasi, A. Pedone, M.C. Menziani, Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations. J. Phys. Chem. B 117(15), 4142–50 (2013)

    Google Scholar 

  110. G. Lusvardi, G. Malavasi, L. Menabue, M.C. Menziani, A. Pedone, U. Segre, A computational tool for the prediction of crystalline phases obtained from controlled crystallization of glasses. J. Phys. Chem. B 109(46), 21586–92 (2005)

    Google Scholar 

  111. A. Tilocca, A.N. Cormack, N.H. de Leeuw, The structure of bioactive silicate glasses: new insight from molecular dynamics simulations. Chem. Mater. 19(1), 95–103 (2007)

    Google Scholar 

  112. C.-C. Lin, S.-F. Chen, K.S. Leung, P. Shen, Effects of CaO/P\(_{2}\)O\(_{5}\) ratio on the structure and elastic properties of SiO\(_{2}\)-CaO-Na\(_{2}\)O-P\(_{2}\)O\(_{5}\) bioglasses. J. Mater. Sci. Mater. Med. 23(2), 245–258 (2012)

    Google Scholar 

  113. J. Du, L. Kokou, J.L. Rygel, Y. Chen, C.G. Pantano, R. Woodman, J. Belcher, Structure of cerium phosphate glasses: molecular dynamics simulation. J. Am. Ceram. Soc. 94(8), 2393–2401 (2011). Aug

    Google Scholar 

  114. R.A. Martin, G. Mountjoy, R.J. Newport, A molecular dynamics model of the atomic structure of dysprosium alumino-phosphate glass. J. Phys. Condens. Matter 21(7), 075102 (2009)

    Google Scholar 

  115. E.B. Clark, R.N. Mead, G. Mountjoy, A molecular dynamics model of the atomic structure of Tb metaphosphate glass (Tb\(_{2}\)O\(_{3})_{0.25}\)(P\(_{2}\)O\(_{5})\) \(_{0.75}\). J. Phys. Condens. Matter 18(29), 6815–6826 (2006)

    Google Scholar 

  116. G. Mountjoy, Molecular dynamics, diffraction and EXAFS of rare earth phosphate glasses compared with predictions based on bond valence. J. Non-Cryst. Solids 353(18–21), 2029–2034 (2007)

    Google Scholar 

  117. R.P. Rao, M. Seshasayee, Molecular dynamics simulation of ternary glasses Li\(_{2}\)O–P\(_{2}\)O\(_{5}\)–LiCl. Solid State Commun. 131(8), 537–542 (2004)

    Google Scholar 

  118. R.K. Sistla, M. Seshasayee, Structural study of lithium phosphate glasses by X-ray RDF and computer simulations. J. Non-Cryst. Solids 349, 22–29 (2004)

    Google Scholar 

  119. A. Karthikeyan, P. Vinatier, A. Levasseur, K.J. Rao, The molecular dynamics study of lithium ion conduction in phosphate glasses and the role of non-bridging oxygen. J. Phys. Chem. B 103(30), 6185–6192 (1999)

    Google Scholar 

  120. M. Vogel, Complex lithium ion dynamics in simulated LiPO\(_{3}\) glass studied by means of multitime correlation functions. Phys. Rev. B 68(18), 184301–11 (2003)

    Google Scholar 

  121. J.J. Liang, R.T. Cygan, T. Alam, Molecular dynamics simulation of the structure and properties of lithium phosphate glasses. J. Non-Cryst. Solids 263–264, 167–179 (2000)

    Google Scholar 

  122. T.M. Alam, J.J. Liang, R.T. Cygan, Molecular dynamics simulations of the lithium coordination environment in phosphate glasses. Phys. Chem. Chem. Phys. 2(19), 4427–4432 (2000)

    Google Scholar 

  123. G.G. Boiko, N.S. Andreev, A.V. Parkachev, Structure of pyrophosphate 2ZnO\(\cdot \)P\(_{2}\)O\(_{5}\)–2Na\(_{2}\)O\(\cdot \)P\(_{2}\)O\(_{5}\) glasses according to molecular dynamics simulation. J. Non-Cryst. Solids 238(3), 175–185 (1998)

    Google Scholar 

  124. B.C. Tischendorf, T.M. Alam, R.T. Cygan, J.U. Otaigbe, The structure and properties of binary zinc phosphate glasses studied by molecular dynamics simulations. J. Non-Cryst. Solids 316(2–3), 261–272 (2003)

    Google Scholar 

  125. B. Al-Hasni, G. Mountjoy, Structural investigation of iron phosphate glasses using molecular dynamics simulation. J. Non-Cryst. Solids 357(15), 2775–2779 (2011)

    Google Scholar 

  126. B.M. Al-Hasni, G. Mountjoy, E. Barney, A complete study of amorphous iron phosphate structure. J. Non-Cryst. Solids 380, 141–152 (2013)

    Google Scholar 

  127. M. Seshasayee, K. Muruganandam, Molecular dynamics study of V\(_{2}\)O\(_{5}\) glass. Solid State Commun. 105(4), 243–246 (1998)

    Google Scholar 

  128. S. Garofalini, Molecular dynamics simulations of Li transport between cathode crystals. J. Power Sources 110(2), 412–415 (2002). Aug

    Google Scholar 

  129. A. Pedone, G. Malavasi, M.C. Menziani, A.N. Cormack, U. Segre, A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J. Phys. Chem. B 110(24), 11780–95 (2006)

    Google Scholar 

  130. G. Giuli, E. Paris, J. Mungall, C. Romano, D. Dingwell, V oxidation state and coordination number in silicate glasses by XAS. Am. Mineral. 89(11–12), 1640–1646 (2004)

    Google Scholar 

  131. S. Bhattacharya, A. Ghosh, ac relaxation in silver vanadate glasses. Phys. Rev. B 68(22), 224202 (2003)

    Google Scholar 

  132. A. Ghosh, Temperature-dependent thermoelectric power of semiconducting bismuth-vanadate glass. J. Appl. Phys. 65(1), 227 (1989)

    Google Scholar 

  133. E. Denton, H. Rawson, J. Stanworth, Vanadate glasses. Nature 173(4413), 1030–1032 (1954)

    Google Scholar 

  134. A. Feltz, B. Unger, Redox reactions in condensed oxide systems II. Variation of the structure of vanadium phosphate glasses in dependence on the oxidation state of vanadium. J. Non-Cryst. Solids 72(2–3), 335–343 (1985)

    Google Scholar 

  135. L.L. Frazier, P.W. France, Compositional dependence of the electrical conductivity of vanadium phosphate glass. J. Phys. Chem. Solids 38(7), 801–808 (1977)

    Google Scholar 

  136. M. Schindler, F. Hawthorne, W. Baur, Crystal chemical aspects of vanadium: polyhedral geometries, characteristic bond valences, and polymerization of (VO\(_{n})\) polyhedra. Chem. Mater. 12(5), 1248–1259 (2000)

    Google Scholar 

  137. P.Y. Zavalij, M.S. Whittingham, Structural chemistry of vanadium oxides with open frameworks. Acta Crystallogr. Sect. B Struct. Sci. 55(5), 627–663 (1999)

    Google Scholar 

  138. M. Leister, D. Ehrt, G. von der Gönna, C. Rüssel, F.W. Breitbarth, Redox states and coordination of vanadium in sodium silicates melted at high temperatures. Soc. Glass Technol

    Google Scholar 

  139. G. Tricot, L. Montagne, L. Delevoye, G. Palavit, V. Kostoj, Redox and structure of sodium-vanadophosphate glasses. J. Non-Cryst. Solids 345–346, 56–60 (2004)

    Google Scholar 

  140. K. Nagamine, T. Honma, T. Komatsu, A fast synthesis of Li\(_{3}\)V\(_{2}\)(PO\(_{4})\) \(_{3}\) crystals via glass-ceramic processing and their battery performance. J. Power Sources 196(22), 9618–9624 (2011)

    Google Scholar 

  141. A. Pedone, Properties calculations of silica-based glasses by atomistic simulations techniques: a review. J. Phys. Chem. C 113(49), 20773–20784 (2009)

    Google Scholar 

  142. M. Pota, A. Pedone, G. Malavasi, C. Durante, M. Cocchi, M.C. Menziani, Molecular dynamics simulations of sodium silicate glasses: optimization and limits of the computational procedure. Comput. Mater. Sci. 47(3), 739–751 (2010)

    Google Scholar 

  143. W. Smith, T. Forester, DL\_POLY\_2. 0: a general-purpose parallel molecular dynamics simulation package. J. Mol. Graph. 14(3), 136–141 (1996)

    Google Scholar 

  144. A. Bonamartini Corradi, V. Cannillo, M. Montorsi, C. Siligardi, A.N. Cormack, Structural characterization of neodymium containing glasses by molecular dynamics simulation. J. Non-Cryst. Solids 351(14–15), 1185–1191 (2005)

    Google Scholar 

  145. J. Du, A.N. Cormack, The structure of erbium doped sodium silicate glasses. J. Non-Cryst. Solids 351(27–29), 2263–2276 (2005). Aug

    Google Scholar 

  146. B. Vessal, Simulation studies of silicates and phosphates. J. Non-Cryst. Solids 177, 103–124 (1994)

    Google Scholar 

  147. N. Afify, G. Mountjoy, Molecular-dynamics modeling of Eu\(^{3+}\)-ion clustering in SiO\(_{2}\) glass. Phys. Rev. B 79(2), 024202–12 (2009)

    Google Scholar 

  148. J. Gale, GULP: capabilities and prospects. Zeitschrift für Krist. 220(5), 552–554 (2005)

    Google Scholar 

  149. J. Du, A.N. Cormack, The medium range structure of sodium silicate glasses: a molecular dynamics simulation. J. Non-Cryst. Solids 349, 66–79 (2004)

    Google Scholar 

  150. M. Montorsi, M.C. Menziani, C. Leonelli, G.C. Pellacani, A.N. Cormack, Molecular dynamics simulations of alumina addition in sodium silicate glasses. Mol. Simul. 24(1–3), 157–165 (2000)

    Google Scholar 

  151. A.B. Corradi, V. Cannillo, M. Montorsi, C. Siligardi, Influence of Al\(_{2}\)O\(_{3}\) addition on thermal and structural properties of erbium doped glasses. J. Mater. Sci. 41(10), 2811–2819 (2006)

    Google Scholar 

  152. G. Mountjoy, B.M. Al-Hasni, C. Storey, Structural organisation in oxide glasses from molecular dynamics modelling. J. Non-Cryst. Solids 357(14), 2522–2529 (2011)

    Google Scholar 

  153. L. Linati, G. Lusvardi, G. Malavasi, L. Menabue, M.C. Menziani, P. Mustarelli, U. Segre, Qualitative and quantitative structure-property relationships analysis of multicomponent potential bioglasses. J. Phys. Chem. B 109(11), 4989–4998 (2005)

    Google Scholar 

  154. K. Muruganandam, An X-ray RDF study of Li\(_{2}\)O-P\(_{2}\)O\(_{5}\)-LiCl glasses. Solid State Ionics 89(3–4), 313–319 (1996)

    Google Scholar 

  155. T.M. Alam, S. Conzone, R.K. Brow, T.J. Boyle, \(^{6}\)Li, \(^{7}\)Li nuclear magnetic resonance investigation of lithium coordination in binary phosphate glasses. J. Non-Cryst. Solids 258(1–3), 140–154 (1999)

    Google Scholar 

  156. Z. Hiroi, M. Azuma, Y. Fujishiro, T. Saito, M. Takano, F. Izumi, T. Kamiyama, T. Ikeda, Structural study of the quantum-spin chain compound (VO)\(_{2}\)P\(_{2}\)O\(_{7}\). J. Solid State Chem. 146(2), 369–379 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monia Montorsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Montorsi, M., Broglia, G., Mugoni, C. (2015). Structural Insight into Transition Metal Oxide Containing Glasses by Molecular Dynamic Simulations. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P. (eds) Molecular Dynamics Simulations of Disordered Materials. Springer Series in Materials Science, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-15675-0_8

Download citation

Publish with us

Policies and ethics