Advertisement

Topological Constraints, Rigidity Transitions, and Anomalies in Molecular Networks

Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 215)

Abstract

In this chapter, we present the first connection between realistic atomic scale simulations and topological constraint theory which has been introduced in the context of rigidity transitions of network glasses. Such rigid constraints can be computed rather simply by changing composition at low temperature but their estimates as a function of temperature or pressure remains challenging. We introduce and describe a method based on the calculation of standard deviations of relevant neighbor or partial bond-angle distributions which allows to estimate with confidence atomic stretching and bending topological constraints. The counting is illustrated from several archetypal liquids and glasses, including oxides and chalcogenides (SiO\(_2\), Ge\(_x\)Se\(_{1-x}\),...). These results permit connecting the role of mechanical constraints in disordered systems to elucidating some of its most intruiging features (adaptation), with calculated anomalies in structural and dynamic properties.

Keywords

Network Glass Pair Distribution Function Topological Constraint Rigidity Transition Partial Structure Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Support from Agence Nationale de la Recherche (ANR) (Grant No. 09-BLAN-0109-01 and Grant No. 11-BS08-0012) is gratefully acknowledged. MM acknowledges support from the French-American Fulbright Commission, and from International Materials Institute (H. Jain). GENCI (Grand Equipement National de Calcul Intensif) is acknowledged for supercomputing access. The authors thank C. Massobrio, S. Le Roux, M. Boero, C. Bichara, P. Boolchand, S. Boshle, K. Gunasekera, M. Malki, G.G. Naumis, A. Pasquarello, J.-Y. Raty, G. Ferlat, J.C. Phillips, P. Simon, M. Salanne, D. De Sousa-Meneses, R. Vuilleumier, S. Ravindren, N. Mousseau, S. Chakraborty for stimulating discussions.

References

  1. 1.
    M.F. Thorpe, P.M Duxbury (eds.), Rigidity Theory and Applications (Kluwer Academic, Plenum Publishers, New York, 1999)Google Scholar
  2. 2.
    M. Micoulaut, M. Popescu (eds.), Rigidity and Boolchand Intermediate Phases in Nanomaterials (INOE Publishing House, Bucarest, 2009)Google Scholar
  3. 3.
    M.F. Thorpe, J.C. Phillips (eds.), Phase Transitions and Self-organization in Electronic and Molecular Networks (Kluwer Academic, Plenum Publishers, New York, 2001)Google Scholar
  4. 4.
    M. Zhang, P. Boolchand, Science 266, 1355 (1994)CrossRefGoogle Scholar
  5. 5.
    J.L. Lagrange, Mécanique Analytique (Courcier, Paris, 1788)Google Scholar
  6. 6.
    J.C. Maxwell, Philos. Mag. 27, 294 (1864)Google Scholar
  7. 7.
    J.C. Phillips, J. Non-Cryst. Solids 34, 153 (1979)Google Scholar
  8. 8.
    J.C. Phillips, Phys. Rev. B 28, 7038 (1983)CrossRefGoogle Scholar
  9. 9.
    J.C. Phillips, Phys. Today 35, 27 (1982)CrossRefGoogle Scholar
  10. 10.
    M. Micoulaut, W. Welnic, M. Wuttig, Phy. Rev. B 78, 224209 (2008)CrossRefGoogle Scholar
  11. 11.
    P. Boolchand, M.F. Thorpe, Phys. Rev. B 50, 10366 (1994)CrossRefGoogle Scholar
  12. 12.
    W.J. Bresser, P. Suranyi, P. Boolchand, Phys. Rev. Lett. 56, 2493 (1986)CrossRefGoogle Scholar
  13. 13.
    R. Azoulay, H. Thibierge, A. Brenac, J. Non-Cryst. Solids 18, 33 (1975)Google Scholar
  14. 14.
    M.F. Thorpe, J. Non-Cryst. Solids 57, 355 (1983)Google Scholar
  15. 15.
    H. He, M.F. Thorpe, Phys. Rev. Lett. 54, 2107 (1985)CrossRefGoogle Scholar
  16. 16.
    M.F. Thorpe, J. Non-Cryst. Solids 76, 109 (1985)Google Scholar
  17. 17.
    W.A. Kamitakahara, R.L. Cappelletti, P. Boolchand, B. Halfpap, F. Gompf, D.A. Neumann, H. Mutka, Phys. Rev. B 44, 94 (1991)CrossRefGoogle Scholar
  18. 18.
    X. Feng, W. Bresser, P. Boolchand, Phys. Rev. Lett. 78, 4422 (1997)CrossRefGoogle Scholar
  19. 19.
    M. Tatsumisago, B.L. Halfpap, J.L. Green, S.M. Lindsay, C.A. Angell, Phys. Rev. Lett. 64, 1549 (1990)CrossRefGoogle Scholar
  20. 20.
    A.N. Sreeram, A.K. Varshneya, D.R. Swiler, J. Non-Cryst. Solids 128, 294 (1991)Google Scholar
  21. 21.
    P. Boolchand, W.J. Bresser, M. Zhang, Y. Wu, J. Wells, R.N. Enzweiler, J. Non-Cryst. Solids 82, 143 (1995)Google Scholar
  22. 22.
    S. Asokan, M.Y.N. Prasad, G. Parthasarathy, Phys. Rev. Lett. 62, 808 (1989)CrossRefGoogle Scholar
  23. 23.
    R.A. Bohmer, C.A. Angell, Phys. Rev. B 45, 1091 (1992)CrossRefGoogle Scholar
  24. 24.
    D. Selvenathan, W. Bresser, P. Boolchand, Solid State Commun. 111, 619 (1999)CrossRefGoogle Scholar
  25. 25.
    D. Selvenathan, W. Bresser, P. Boolchand, Phys. Rev. B 61, 15061 (2000)CrossRefGoogle Scholar
  26. 26.
    M.F. Thorpe, D.J. Jacobs, M.V. Chubynsky, J.C. Phillips, J. Non-Cryst. Solids 266–269, 859 (2000)Google Scholar
  27. 27.
    M. Micoulaut, J.C. Phillips, Phys. Rev. B 67, 104204 (2003)CrossRefGoogle Scholar
  28. 28.
    S. Bhosle, P. Boolchand, M. Micoulaut, C. Massobrio, Solid State Commun. 151, 1851 (2011)CrossRefGoogle Scholar
  29. 29.
    S. Bhosle, K. Gunasekera, P. Boolchand, M. Micoulaut, Int. J. Appl. Glass Sci. 3, 205 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Bhosle, K. Gunasekera, P. Boolchand, M. Micoulaut, Int. J. Appl. Glass Sci. 3, 189 (2012)CrossRefGoogle Scholar
  31. 31.
    Y. Vaills, T. Qu, M. Micoulaut, F. Chaimbault, P. Boolchand, J. Phys. Condens. Matter 17, 4889 (2005)CrossRefGoogle Scholar
  32. 32.
    M. Micoulaut, Am. Mineral. 93, 1732 (2008)CrossRefGoogle Scholar
  33. 33.
    S. Chakravarty, D.G. Georgiev, P. Boolchand, M. Micoulaut, J. Phys. Condens. Matter 17, L7 (2005)CrossRefGoogle Scholar
  34. 34.
    K. Gunasekara, S. Bhosle, P. Boolchand, M. Micoulaut, J. Chem. Phys. 139, 164511 (2013)CrossRefGoogle Scholar
  35. 35.
    G. Yang, O. Gulbiten, Y. Gueguen, B. Bureau, J-Ch. Sangleboeuf, C. Roiland, E.A. King, P. Lucas, Phys. Rev. B 85, 144107 (2012)CrossRefGoogle Scholar
  36. 36.
    F. Wang, S. Mamedov, P. Boolchand, B. Goodman, M. Chandrasekhar, Phys. Rev. B 71, 174201 (2005)CrossRefGoogle Scholar
  37. 37.
    P.K. Gupta, J.C. Mauro, J. Chem. Phys. 130, 094503 (2009)CrossRefGoogle Scholar
  38. 38.
    R.G. Srinivasa, A. Arunbabu, S. Asokan, J. Solid State Chem. 184, 3345 (2011)CrossRefGoogle Scholar
  39. 39.
    B.J. Madhu, H.S. Jayanna, S. Asokan, Eur. Phys. J. B 71, 21 (2009)CrossRefGoogle Scholar
  40. 40.
    D.G. Georgiev, D.G. Georgiev, P. Boolchand, M. Micoulaut, Phys. Rev. B 62, R9228 (2000)CrossRefGoogle Scholar
  41. 41.
    P. Chen, C. Holbrook, P. Boolchand, D.G. Georgiev, M. Micoulaut, Phys. Rev. B 78, 224208 (2008)CrossRefGoogle Scholar
  42. 42.
    D. Novita, P. Boolchand, M. Malki, M. Micoulaut, Phys. Rev. Lett. 98, 195501 (2007)CrossRefGoogle Scholar
  43. 43.
    D.J. Jacobs, A.J. Rader, L.A. Kuhn, M.F. Thorpe, Proteins 44, 150 (2001)CrossRefGoogle Scholar
  44. 44.
    J.C. Phillips, Phys. Rev. Lett. 88, 216401 (2002)CrossRefGoogle Scholar
  45. 45.
    R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, L. Troyansky, Nature 400, 133 (1999)CrossRefGoogle Scholar
  46. 46.
    J. Barré, A.R. Bishop, T. Lookman, A. Saxena, Phys. Rev. Lett. 94, 208701 (2005)CrossRefGoogle Scholar
  47. 47.
    R. Rompicharla, D.I. Novita, P. Chen, P. Boolchand, M. Micoulaut, W. Huff, J. Phys. Condens. Matter 20, 202101 (2008)CrossRefGoogle Scholar
  48. 48.
    S. Chakraborty, P. Boolchand, M. Malki, M. Micoulaut, unpublishedGoogle Scholar
  49. 49.
    S.W. King et al., J. Non-Cryst. Solids 379, 67 (2013)CrossRefGoogle Scholar
  50. 50.
    M.T.M. Shatnawi, C.L. Farrow, P. Chen, P. Boolchand, A. Sartbaeva, M.F. Thorpe, S.J.L. Billinge, Phys. Rev. B 77, 094134 (2008)CrossRefGoogle Scholar
  51. 51.
    M. Bauchy, M. Micoulaut, M. Boero, C. Massobrio, Phys. Rev. Lett. 110, 165501 (2013)CrossRefGoogle Scholar
  52. 52.
    M. Micoulaut, M. Bauchy, Phys. Status Solidi 250, 976 (2013)CrossRefGoogle Scholar
  53. 53.
    B. Bureau, J. Troles, M. Le Floch, F. Smektala, J. Lucas, J. Non-Cryst. Solids 326–327, 58 (2003)Google Scholar
  54. 54.
    M. Micoulaut, Phys. Rev. B 74, 184208 (2006)CrossRefGoogle Scholar
  55. 55.
    M.V. Chubynsky, M.A. Brière, N. Mousseau, Phys. Rev. E 74, 016116 (2006)CrossRefGoogle Scholar
  56. 56.
    K. Trachenko, M.T. Dove, Phys. Rev. B 67, 212203 (2003)CrossRefGoogle Scholar
  57. 57.
    M. Bauchy, M. Micoulaut, Phys. Rev. Lett. 110, 095501 (2013)CrossRefGoogle Scholar
  58. 58.
    F. Inam, G. Chen, D.N. Tafen, D.A. Drabold, Phys. Status Solidi B 246, 1849 (2009)CrossRefGoogle Scholar
  59. 59.
    G. Chen, F. Inam, D.A. Drabold, Appl. Phys. Lett. 97, 131901 (2010)CrossRefGoogle Scholar
  60. 60.
    B. Effey, R.L. Cappelletti, Phys. Rev. B 59, 4119 (1999)CrossRefGoogle Scholar
  61. 61.
    B.O. Mysen, P. Richet, Silicate Glasses and Melts: Structure and Properties (Springer, Berlin, 2005)Google Scholar
  62. 62.
    P. Boolchand (ed.), Insulating and Semi-Conducting Glasses (World Scientific, Singapore, 2000)Google Scholar
  63. 63.
    L. Cai, P. Boolchand, Philos. Mag. B 82, 1649 (2002)Google Scholar
  64. 64.
    E.L. Gjersing, S. Sen, R.E. Youngman, Phys. Rev. B 82, 014203 (2010)CrossRefGoogle Scholar
  65. 65.
    J.C. Mauro, R.J. Loucks, P.K. Gupta, J. Phys. Chem. A 111, 7957 (2007)CrossRefGoogle Scholar
  66. 66.
    C.A. Angell, B.E. Richards, V. Velikov, J. Phys. Condens. Matter 11, A75 (1999)CrossRefGoogle Scholar
  67. 67.
    J.C. Mauro, R.J. Loucks, J. Chem. Phys. 130, 234503 (2009)CrossRefGoogle Scholar
  68. 68.
    M. Smedskjaer, J.C. Mauro, R.E. Youngman, C.L. Hogue, M. Potuzak, Y. Yue, J. Phys. Chem. B 115, 12930 (2011)CrossRefGoogle Scholar
  69. 69.
    M.M. Smedskjaer, J.C. Mauro, Y. Yue, Phys. Rev. Lett. 105, 115503 (2010)CrossRefGoogle Scholar
  70. 70.
    B. Shadrack Jabes, M. Agarwal, C. Chaktavarty, J. Chem. Phys. 132, 234507 (2010)Google Scholar
  71. 71.
    J.R. Errington, P.G. Debenedetti, Nature 409, 318 (2001)CrossRefGoogle Scholar
  72. 72.
    U. Senapati, A.K. Varshneya, J. Non-Cryst. Solids 197, 210 (1996)Google Scholar
  73. 73.
    U. Senapati, A.K. Varshnaya, J. Non-Cryst. Solids 185, 289 (1995)Google Scholar
  74. 74.
    F. Wilcek, Phys. Today 57, 10 (2004)Google Scholar
  75. 75.
    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)CrossRefGoogle Scholar
  76. 76.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  77. 77.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  78. 78.
    S. Nosé, Mol. Phys. 52, 255 (1984)Google Scholar
  79. 79.
    W.G. Hoover. Phys. Rev. A 31, 1695 (1985)Google Scholar
  80. 80.
    M. Micoulaut, R. Vuilleumier, C. Massobrio, Phys. Rev. B 79, 214204 (2009)CrossRefGoogle Scholar
  81. 81.
    C. Massobrio, M. Micoulaut, P.S. Salmon, Solid State Sci. 12, 199 (2010)CrossRefGoogle Scholar
  82. 82.
    S. Tsuneyucki, M. Tsukada, H. Aoki, Y. Matsui, Phys. Rev. Lett. 61, 869 (1988)CrossRefGoogle Scholar
  83. 83.
    R.D. Oeffner, S.R. Elliott, Phys. Rev. B 58, 14791 (1998)CrossRefGoogle Scholar
  84. 84.
    A.N. Cormack, J. Du, T.R. Zeitler, Phys. Chem. Chem. Phys. 4, 3193 (2002)CrossRefGoogle Scholar
  85. 85.
    P.S. Salmon, A.C. Barnes, R.A. Martin, G.J. Cuello, J. Phys. Condens. Matter 19, 415110 (2007)CrossRefGoogle Scholar
  86. 86.
    P.S. Salmon, J. Non-Cryst. Solids 353, 2959 (2007)Google Scholar
  87. 87.
    S. Xin, J. Liu, P.S. Salmon, Phys. Rev. B 78, 064207 (2008)CrossRefGoogle Scholar
  88. 88.
    M. Fabian, E. Sváb, V. Pamukchieva, A. Szekeres, S. Vogel, U. Ruett, J. Phys. Condens. Matter 253, 012053 (2010)Google Scholar
  89. 89.
    J.C. Mauro, A.K. Varshneya, J. Non-Cryst. Solids 353, 1226 (2007)Google Scholar
  90. 90.
    M. Micoulaut, A. Kachmar, M. Bauchy, S. Le Roux, C. Massobrio, M. Boero, Phys. Rev. B 88, 054203 (2013)CrossRefGoogle Scholar
  91. 91.
    M. Bauchy, M. Micoulaut, J. Non-Cryst. Solids 377, 34 (2013)Google Scholar
  92. 92.
    C. Massobrio, A. Pasquarello, R. Car, Phys. Rev. B 64, 144205 (2001)CrossRefGoogle Scholar
  93. 93.
    C. Massobrio, A. Pasquarello, Phys. Rev. B 77, 144207 (2008)CrossRefGoogle Scholar
  94. 94.
    C. Massobrio, A. Pasquarello, R. Car, J. Am. Chem. Soc. 121, 2943 (1999)CrossRefGoogle Scholar
  95. 95.
    I. Petri, P.S. Salmon, H.E. Fischer, Phys. Rev. Lett. 84, 2413 (2000)CrossRefGoogle Scholar
  96. 96.
    A. Bouzid, C. Massobrio, J. Chem. Phys. 137, 224201 (2012)CrossRefGoogle Scholar
  97. 97.
    S. Hosokawa, Y. Wang, W.-C. Pilgrim, J.-F. Bérar, S. Mamedov, P. Boolchand, J. Non-Cryst, Solids 352, 1517 (2006)Google Scholar
  98. 98.
    S. Hosokawa, Y. Kawakita, W.-C. Pilgrim, F. Hensel, J. Non-Cryst. Solids 293–295, 153 (2001)Google Scholar
  99. 99.
    G.D. Negodaev, I.A. Ivanov, K.K. Evstop’ev, Elektrokhim. 8, 234 (1972)Google Scholar
  100. 100.
    Y.P. Gupta, T.B. King, Trans. Metall. Soc. AIME 239, 1701 (1967)Google Scholar
  101. 101.
    J.R. Johnson, R.H. Bristow, H.H. Blau, J. Am. Ceram. Soc. 34, 165 (1951)CrossRefGoogle Scholar
  102. 102.
    M. Truhlarova, O. Veprek, Silikaty 14, 1 (1970)Google Scholar
  103. 103.
    G.J. Kramer, A.J.M. de Man, R.A. van Santen, J. Am. Chem. Soc. 113, 6435 (1991)CrossRefGoogle Scholar
  104. 104.
    J. Horbach, W. Kob, K. Binder, Chem. Geol. 174, 87 (2001)CrossRefGoogle Scholar
  105. 105.
    S. Stolen, T. Grande, H.-B. Johnsen, Phys. Chem. Chem. Phys. 4, 3396 (2002)CrossRefGoogle Scholar
  106. 106.
    G. Yang, T. Rouxel, J. Troles, B. Bureau, C. Boussard-Plédel, P. Houizot, J.-C. Sangleboeuf, J. Am. Ceram. Soc. 94, 2408 (2011)CrossRefGoogle Scholar
  107. 107.
    M. Bauchy, B. Guillot, M. Micoulaut, N. Sator, Chem. Geol. 346, 47 (2013)CrossRefGoogle Scholar
  108. 108.
    M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Oxford University Press, Oxford, 1987)Google Scholar
  109. 109.
    J.O.M. Bockris, J.D. Mackenzie, J.A. Kitchener, Trans. Faraday Soc. 51, 1734 (1955)CrossRefGoogle Scholar
  110. 110.
    D.R. Neuville, Chem. Geol. 229, 28 (2006)CrossRefGoogle Scholar
  111. 111.
    J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan, Proc. Natl. Acad. USA 106, 19780 (2009)CrossRefGoogle Scholar
  112. 112.
    M. Micoulaut, S. Le Roux, C. Massobrio, J. Chem. Phys. 136, 224504 (2012)CrossRefGoogle Scholar
  113. 113.
    M. Hemmati, C.A. Angell, J. Non-Cryst. Solids 217, 236 (1997)Google Scholar
  114. 114.
    J.Y. Raty, C. Otjacques, J.P. Gaspard, C. Bichara, Solid State Sci. 12, 193 (2010)CrossRefGoogle Scholar
  115. 115.
    M. Micoulaut, A. Kachmar, Th Charpentier, Phys. Status Solidi B 249, 1890 (2012)CrossRefGoogle Scholar
  116. 116.
    M. Micoulaut, C. Otjacques, J.-Y. Raty, C. Bichara, Phys. Rev. B 81, 174206 (2010)CrossRefGoogle Scholar
  117. 117.
    M. Bauchy, M. Micoulaut, J. Non-Cryst. Solids 357, 2530 (2011)Google Scholar
  118. 118.
    M. Bauchy, M. Micoulaut, M. Celino, M. Boero, S. Le Roux, C. Massobrio, Phys. Rev. B 83, 054201 (2011)Google Scholar
  119. 119.
    R. Hussein, R. Dupree, D. Holland, J. Non-Cryst. Solids 246, 159 (1999)Google Scholar
  120. 120.
    N. Mousseau, M.F. Thorpe, Phys. Rev. B 52, 2660 (1995)Google Scholar
  121. 121.
    F.J. Bermejo, C. Cabrillo, E. Bychkov, P. Fouquet, G. Ehlers, W. Hussler, D.L. Price, M.L. Saboungi, Phys. Rev. Lett. 100, 245902 (2008)Google Scholar
  122. 122.
    M. Micoulaut, J. Phys. Condens. Matter 22, 285101 (2010)CrossRefGoogle Scholar
  123. 123.
    P. Chen, P. Boolchand, D.G. Georgeiv, J. Phys. Condens. Matter 22, 065104 (2010)CrossRefGoogle Scholar
  124. 124.
    K. Trachenko, M.T. Dove, V. Brazhkin, F.S. El’kin, Phys. Rev. Lett. 93, 135502 (2004)CrossRefGoogle Scholar
  125. 125.
    M. Bauchy, M. Micoulaut, Phys. Rev. B 83, 184118 (2011)CrossRefGoogle Scholar
  126. 126.
    M. Bauchy, J. Chem. Phys. 137, 044510 (2012)CrossRefGoogle Scholar
  127. 127.
    M. Scott Shell, P.G. Debenedetti, A.Z. Panagiotopoulos, Phys. Rev. E 66, 011202 (2002)Google Scholar
  128. 128.
    P.L. Chau, A.J. Hardwick, Mol. Phys. 93, 511 (1998)CrossRefGoogle Scholar
  129. 129.
    M. Misawa, D.L. Price, K. Suzuki, J. Non-Cryst. Solids 37, 85 (1980)Google Scholar
  130. 130.
    P.S. Salmon, R.A. Martin, P.E. Mason, G. Cuello, Nature 435, 75 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratoire de Physique Thorique de la Matire CondenseParis Cedex 05France
  2. 2.Department of Civil and Environmental EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations