Skip to main content

SQUID Detectors of Magnetic Flux

  • Chapter
  • First Online:
Introduction to Quantum Metrology

Abstract

This chapter presents the principles of operation and design of superconducting quantum interference devices, known under the acronym SQUID. RF-SQUIDs, which have a single Josephson junction in a closed magnetic circuit and are biased with radio-frequency signal, are discussed with their parameters provided. At much greater length we discuss DC-SQUIDs, which have two Josephson junctions and are biased with direct current. The equation describing the conversion of the magnetic flux to the output voltage is derived for both the RF- and DC-SQUIDs. We analyze the energy resolution of SQUIDs, citing the record resolution of the DC-SQUID, equal to 0.5h. We provide many examples of SQUID-based measurement systems, including systems for biomagnetic studies, non-destructive evaluation (NDE) systems and noise thermometers for the measurement of very low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Andrä, H. Nowak, Magnetism in Medicine (Wiley-VCH, Londyn, 1998)

    Google Scholar 

  2. J. Bork, H.-D. Hahlbohm, R. Klein, A. Schnabel, The 8-layer magnetically shielded room of the PTB. In Proceedings of 12th International Conference on Biomagnetism, ed. by J. Nenonen, R. Ilmoniemi, T. Katila. pp. 970–973, 2000

    Google Scholar 

  3. M. Burghoff, Noise reduction in biomagnetic recordings. Referat na 13th International Conference on Biomagnetism (Jena (Niemcy), 2002)

    Google Scholar 

  4. R. Cantor, T. Ryhänen, H. Seppä, in Superconducting Devices and Their Applications, ed. by H. Koch, H. Lübbig. A Compact Very Low Noise DC-SQUID Magnetometer (Springer, Heidelberg, 1992), pp. 276–280

    Google Scholar 

  5. J. Clarke, W.M. Goubau, M.B. Ketchen, Tunnel junction DC-SQUID: fabrication, operation and performance. J. Low Temp. Phys. 25, 99–144 (1976)

    Article  ADS  Google Scholar 

  6. G.B. Donaldson, A. Cochran, McKirdy D. McA., The Use of SQUIDs for Nondestructive Evaluation, Chapter XXX, ed. by H. Weinstock, NATO ASI Series. SQUID Sensors (Kluwer, New York, 1996), pp. 599–628

    Google Scholar 

  7. D. Drung, Advanced SQUID Read-Out Electronics, [ibid 6], Chapter 2, pp. 63–116

    Google Scholar 

  8. D. Drung, M. Mück, in SQUID Electronics, Chapter 4, ed. by J. Clarke, A. Braginski. SQUID Handbook (Wiley, New York, 2003)

    Google Scholar 

  9. D. Drung, Digital feedback loops for DC-SQUIDs. Cryogenics 26, 623–627 (1986)

    Article  ADS  Google Scholar 

  10. D. Drung, The PTB 83-SQUID system for biomagnetic applications in a clinic. IEEE Trans. Appl. Supercond. 5, 2112–2117 (1995)

    Article  Google Scholar 

  11. L. Grönberg, et al., A Low Noise DC-SQUID Based on Nb/Al-AlOx/Nb Josephson Junctions, ibid [3], pp. 281–285

    Google Scholar 

  12. L. Hao, et al., Simulations and experiments on HTS resistive SQUIDs, in Proceedings of the 4th European Conference on Applied Superconductivity, Sitges (Hiszpania) Institute of Physics Conference Series, 1999, No 167, pp. 469–472

    Google Scholar 

  13. A. Hoffmann, B. Buchholz, UHF resistive SQUID noise thermometer at temperatures between 0.005 and 4.2 K, J. Phys. E: Scien. Instrum. 17, 1035–1037 (1984)

    Google Scholar 

  14. M. Itoh et al., Measurements of Nyquist noise spectra in passive electric circuits by using a SQUID. Japan. J. Appl. Phys. 25, 1097–1105 (1986)

    Article  ADS  Google Scholar 

  15. R.C. Jaklevic, J. Lambe, A.H. Silver, J.E. Mercereau, Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12, 159–160 (1964)

    Article  ADS  Google Scholar 

  16. K. Kado, G. Uehara, Multichannel SQUIID system. FED J. 5, 12–19 (1994)

    Google Scholar 

  17. R.A. Kamper, J.E. Ziemmerman, Noise thermometer with Josephson effect. J. Appl. Phys. 42, 132–136 (1971)

    Article  ADS  Google Scholar 

  18. M. Kawasaki, P. Chaudhari, T. Newman, A. Gupta, Sub-micron YBaCuO Grain Boundary Junction DC-SQUID, ibid [5], pp. 150–154

    Google Scholar 

  19. M.B. Ketchen, Design and Fabrication Considerations for Extending Integrated DC-SQUIDs to the Deep Sub-micron Regime, ibid [5], pp. 256–264

    Google Scholar 

  20. J. Knuutila et al., A 122-channel whole-cortex SQUID system for measuring brain’s magnetic fields. IEEE Trans. Magn. 29, 3315–3320 (1993)

    Article  ADS  Google Scholar 

  21. K. Likharev, V. Semenov, Fluctuation spectrum in superconducting point junctions. Pisma Zhurnal Eksperim. i Teoret. Fizyki 15, 625–629 (1972)

    Google Scholar 

  22. A.P. Long, T.D. Clark, R.J. Prance, M.G. Richards, High performance UHF SQUID magnetometer. Rev. Sci. Instrum. 50, 1376–1381 (1979)

    Article  ADS  Google Scholar 

  23. O.V. Lounasmaa, Experimental Principles and Methods Below 1 K (Academic Press, New York, 1973)

    Google Scholar 

  24. S. Menkel, Integrierte Dünnschicht-DC-RSQUIDs für die Rauschthermometrie, Ph.D. thesis, Faculty of Physics (Jena University, Germany, 2001)

    Google Scholar 

  25. W. Nawrocki, K.-H. Berthel, T. Döhler, H. Koch, Measurements of thermal noise by DC-SQUID. Cryogenics 28, 394–397 (1988)

    Article  ADS  Google Scholar 

  26. W. Nawrocki, Noise Thermometry (in Polish) (Publishing House of Poznan University of Technology, Poznan, 1995)

    Google Scholar 

  27. H.W.P. Quartero, J.G. Stinstra, H.J.G. Krooshoop, M.J. Peters, in Abstracts of Fetal Biomagnetism Satellite Symposium of 4th Hans Berger Conference. Clinical applications for fetal magnetocardiography (Jena 1999) pp. 14–20

    Google Scholar 

  28. G.L. Romani, C. Del Gratta, V. Pizzella, Neuromagnetism and Its Clinical Applications, ibid [7], pp. 445–490

    Google Scholar 

  29. T. Schurig et al, NDE of semiconductor samples and photovoltaic devices with high resolution utilizing SQUID photoscanning, IEICE Trans. Electron. (Japan), E85-C, 665–669 (2002)

    Google Scholar 

  30. R.J. Soulen, H. Marshak, The establishment of a temperature scale from 0.01 to 0.05 K using noise and gamma-ray anisotropy thermometers. Cryogenics 20, 408–411 (1980)

    Article  ADS  Google Scholar 

  31. R.J. Soulen, W.E. Fogle, J.H. Colwell, Measurements of absolute temperature below 0.75 K using a Josephson-junction noise thermometer. J. Low Temp Phys. 94, 385–487 (1994)

    Article  ADS  Google Scholar 

  32. J. Vrba et al., Whole cortex, 64 channel SQUID biomagnetometer sensor. IEEE Trans. Appl. Supercond. 3, 1878–1882 (1993)

    Article  Google Scholar 

  33. R. Weidl, Realisierung eines biomagnetischen Meßsystems fűr die Intensiv-Kardiologie auf Basis von Hochtemperatursupraleitersensoren, PhD thesis, Faculty Physics, Jena University (Germany) (Shaker Verlag, Aachen, 2000)

    Google Scholar 

  34. V. Zakosarenko, F. Schmidl, L. Dörrer, P. Seidel, Thin-film DC-SQUID gradiometer using single YBaCuO layer. Appl. Phys. Lett. 65, 779–780 (1994)

    Article  ADS  Google Scholar 

  35. J.E. Zimmerman, A.H. Silver, Macroscopic quantum interference effects through superconducting point contacts. Phys. Rev. 141, 367–375 (1966)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar Nawrocki .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nawrocki, W. (2015). SQUID Detectors of Magnetic Flux. In: Introduction to Quantum Metrology. Springer, Cham. https://doi.org/10.1007/978-3-319-15669-9_5

Download citation

Publish with us

Policies and ethics