Skip to main content

Night Shifts and Melatonin: Relevance to Age and Breast Cancer

  • Chapter
  • 1367 Accesses

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

In mammals, melatonin is synthesized not only in the pineal gland but also in many other parts of the body. The nocturnal synthesis and release of melatonin by the pineal gland are tightly controlled by the central suprachiasmatic nucleus (SCN) clock. This circadian pacemaker encodes rhythmic output in accordance with light input. Environmental light is sensed by an intrinsically photosensitive retinal ganglion cells (ipRGCs). Circadian rhythmicity in the SCN originates from the interaction of a defined set of “clock genes.” Melatonin is able to alter the levels of various circadian rhythm genes by re-synchronizing a rhythmic pattern of clock gene expression. Silent mating type information regulation 2 homolog-1 (Sirt1), a nicotinamide adenine dinucleotide [NAD+]-dependent histone deacetylase, is required for circadian clock gene expression. Altered circadian rhythm regulation plays a critical role in carcinogenesis. Melatonin significantly inhibits Sirt1 protein transcription and activity in multiple human cancer cell lines. However, light is able to either suppress or synchronize melatonin production according to the light schedule. Therefore in industrialized countries, night-shift workers are at high risk for circadian disruption. Epidemiological studies displayed that the increase in breast cancer risk in night-shift workers is associated with exposure to light at night. Furthermore age-related changes reflect a decline in pacemaker amplitude, due to alteration of SCN functions and systems under its control. Consequently dysfunction of endogenous clocks, melatonin receptor polymorphisms, and age-associated decline of melatonin synthesis are already increased risks of breast cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064

    Google Scholar 

  • Alvarez-García V, González A, Alonso-González C, Martínez-Campa C, Cos S (2013a) Regulation of vascular endothelial growth factor by melatonin in human breast cancer cells. J Pineal Res 54:373–380

    Google Scholar 

  • Alvarez-García V, González A, Alonso-González C, Martínez-Campa C, Cos S (2013b) Antiangiogenic effects of melatonin in endothelial cell cultures. Microvasc Res 87:25–33

    Google Scholar 

  • Alvarez-García V, González A, Martínez-Campa C, Alonso-González C, Cos S (2013c) Melatonin modulates aromatase activity and expression in endothelial cells. Oncol Rep 29:2058–2064

    Google Scholar 

  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Google Scholar 

  • Bartsch C, Bartsch H, Schmidt A, Ilg S, Bichler KH, Flüchter SH (1992) Melatonin and 6-sulfatoxymelatonin circadian rhythms in serum and urine of primary prostate cancer patients: evidence for reduced pineal activity and relevance of urinary determinations. Clin Chim Acta 209:153–167

    Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    Google Scholar 

  • Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Google Scholar 

  • Blask DE (2009) Melatonin, sleep disturbance and cancer risk. Sleep Med Rev 13:257–264

    Google Scholar 

  • Blask DE, Dauchy RT, Sauer LA, Krause JA, Brainard GC (2002) Light during darkness, melatonin suppression and cancer progression. Neuro Endocrinol Lett 23(Suppl 2):52–56

    Google Scholar 

  • Blask DE, Dauchy RT, Sauer LA (2005a) Putting cancer to sleep at night: the neuroendocrine/circadian melatonin signal. Endocrine 27:179–188

    Google Scholar 

  • Blask DE, Brainard GC, Dauchy RT, Hanifin JP, Davidson LK, Krause JA, Sauer LA, Rivera-Bermudez MA, Dubocovich ML, Jasser SA, Lynch DT, Rollag MD, Zalatan F (2005b) Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res 65:11174–11184

    Google Scholar 

  • Blask DE, Hill SM, Dauchy RT, Xiang S, Yuan L, Duplessis T, Mao L, Dauchy E, Sauer LA (2011) Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night. J Pineal Res 51:259–269

    Google Scholar 

  • Boutin JA, Audinot V, Ferry G, Delagrange P (2005) Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci 26:412–419

    Google Scholar 

  • Bracci M, Copertaro A, Manzella N, Staffolani S, Strafella E, Nocchi L, Barbaresi M, Copertaro B, Rapisarda V, Valentino M, Santarelli L (2013) Influence of night-shift and napping at work on urinary melatonin, 17-β-estradiol and clock gene expression in pre-menopausal nurses. J Biol Regul Homeost Agents 27:267–274

    Google Scholar 

  • Canaple L, Kakizawa T, Laudet V (2003) The days and nights of cancer cells. Cancer Res 63:7545–7552

    Google Scholar 

  • Chen ST, Choo KB, Hou MF, Yeh KT, Kuo SJ, Chang JG (2005) Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26:1241–1246

    Google Scholar 

  • Cheng Y, Cai L, Jiang P, Wang J, Gao C, Feng H, Wang C, Pan H (2013) Yang Y. SIRT1 inhibition by melatonin exerts antitumor activity in human osteosarcoma cells. Eur J Pharmacol 715:219–229

    Google Scholar 

  • Claustrat B, Brun J, Chazot G (2005) The basic physiology and pathophysiology of melatonin. Sleep Med Rev 9:11–24

    Google Scholar 

  • Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, Frye R, Ploegh H, Kessler BM, Sinclair DA (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13:627–638

    Google Scholar 

  • Collins A, Yuan L, Kiefer TL, Cheng Q, Lai L, Hill SM (2003) Overexpression of the MT1 melatonin receptor in MCF-7 human breast cancer cells inhibits mammary tumor formation in nude mice. Cancer Lett 189:49–57

    Google Scholar 

  • Cos S, González A, Martínez-Campa C, Mediavilla MD, Alonso-González C, Sánchez-Barceló EJ (2006) Estrogen-signaling pathway: a link between breast cancer and melatonin oncostatic actions. Cancer Detect Prev 30:118–128

    Google Scholar 

  • Cos S, González A, Martínez-Campa C, Mediavilla MD, Alonso-González C, Sánchez-Barceló EJ (2008) Melatonin as a selective estrogen enzyme modulator. Curr Cancer Drug Targets 8:691–702

    Google Scholar 

  • Cucina A, Proietti S, D’Anselmi F, Coluccia P, Dinicola S, Frati L, Bizzarri M (2009) Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells. J Pineal Res 46:172–180

    Google Scholar 

  • Dai J, Ram PT, Yuan L, Spriggs LL, Hill SM (2001) Transcriptional repression of RORalpha activity in human breast cancer cells by melatonin. Mol Cell Endocrinol 176:111–120

    Google Scholar 

  • Danielczyk K, Dziegiel P (2009) MT1 melatonin receptors and their role in the oncostatic action of melatonin. Postepy Hig Med Dosw (Online) 63:425–434

    Google Scholar 

  • Davis S, Mirick DK, Stevens RG (2001) Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 93:1557–1562

    Google Scholar 

  • Davis S, Mirick DK, Chen C, Stanczyk FZ (2012) Night shift work and hormone levels in women. Cancer Epidemiol Biomarkers Prev 21:609–618

    Google Scholar 

  • Deery MJ, Maywood ES, Chesham JE, Sládek M, Karp NA, Green EW, Charles PD, Reddy AB, Kyriacou CP, Lilley KS, Hastings MH (2009) Proteomic analysis reveals the role of synaptic vesicle cycling in sustaining the suprachiasmatic circadian clock. Curr Biol 19:2031–2036

    Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    Google Scholar 

  • Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, Gillette MU (1994) Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266:1713–1717

    Google Scholar 

  • Ding JM, Faiman LE, Hurst WJ, Kuriashkina LR, Gillette MU (1997) Resetting the biological clock: mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J Neurosci 17:667–675

    Google Scholar 

  • Ding JM, Buchanan GF, Tischkau SA, Chen D, Kuriashkina L, Faiman LE, Alster JM, McPherson PS, Campbell KP, Gillette MU (1998) A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394:381–384

    Google Scholar 

  • Do MT, Yau KW (2010) Intrinsically photosensitive retinal ganglion cells. Physiol Rev 90:1547–1581

    Google Scholar 

  • Erren TC, Reiter RJ (2009) Defining chronodisruption. J Pineal Res 46:245–247

    Google Scholar 

  • Erren TC, Pape HG, Reiter RJ, Piekarski C (2008) Chronodisruption and cancer. Naturwissenschaften 95:367–382

    Google Scholar 

  • Erren TC, Morfeld P, Stork J, Knauth P, von Mülmann MJ, Breitstadt R, Müller U, Emmerich M, Piekarski C (2009) Shift work, chronodisruption and cancer? – The IARC 2007 challenge for research and prevention and 10 theses from the Cologne Colloquium 2008. Scand J Work Environ Health 35:74–79

    Google Scholar 

  • Erren TC, Falaturi P, Morfeld P, Knauth P, Reiter RJ, Piekarski C (2010) Shift work and cancer: the evidence and the challenge. Dtsch Arztebl Int 107:657–662

    Google Scholar 

  • Filipski E, Delaunay F, King VM, Wu MW, Claustrat B, Gréchez-Cassiau A, Guettier C, Hastings MH, Francis L (2004) Effects of chronic jet lag on tumor progression in mice. Cancer Res 64:7879–7885

    Google Scholar 

  • Flynn-Evans EE, Stevens RG, Tabandeh H, Schernhammer ES, Lockley SW (2009) Total visual blindness is protective against breast cancer. Cancer Causes Control 20:1753–1756

    Google Scholar 

  • Fraga MF, Agrelo R, Esteller M (2007) Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci 1100:60–74

    Google Scholar 

  • Fu L, Lee CC (2003) The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 3:350–361

    Google Scholar 

  • Gery S, Komatsu N, Baldjyan L, Yu A, Koo D, Koeffler HP (2006) The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22:375–382

    Google Scholar 

  • Ginty DD, Kornhauser JM, Thompson MA, Bading H, Mayo KE, Takahashi JS, Greenberg ME (1993) Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260:238–241

    Google Scholar 

  • Girgert R, Bartsch C, Hill SM, Kreienberg R, Hanf V (2003) Tracking the elusive antiestrogenic effect of melatonin: a new methodological approach. Neuro Endocrinol Lett 24:440–444

    Google Scholar 

  • Golombek DA, Agostino PV, Plano SA, Ferreyra GA (2004) Signaling in the mammalian circadian clock: the NO/cGMP pathway. Neurochem Int 45:929–936

    Google Scholar 

  • Gonzalez A, Cos S, Martinez-Campa C, Alonso-Gonzalez C, Sanchez-Mateos S, Mediavilla MD, Sanchez-Barcelo EJ (2008) Selective estrogen enzyme modulator actions of melatonin in human breast cancer cells. J Pineal Res 45:86–92

    Google Scholar 

  • Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB (2001) Melanopsin in cell of origin of the retinohypothalamic tract. Nat Neurosci 4:1165

    Google Scholar 

  • Graham C, Cook MR, Kavet R, Sastre A, Smith DK (1998) Prediction of nocturnal plasma melatonin from morning urinary measures. J Pineal Res 24:230–238

    Google Scholar 

  • Green CB, Takahashi JS, Bass J (2008) The meter of metabolism. Cell 134:728–742

    Google Scholar 

  • Grundy A, Schuetz JM, Lai AS, Janoo-Gilani R, Leach S, Burstyn I, Richardson H, Brooks-Wilson A, Spinelli JJ, Aronson KJ (2013) Shift work, circadian gene variants and risk of breast cancer. Cancer Epidemiol 37:606–612

    Google Scholar 

  • Guido ME, de Guido LB, Goguen D, Robertson HA, Rusak B (1999) Daily rhythm of spontaneous immediate-early gene expression in the rat suprachiasmatic nucleus. J Biol Rhythms 14:275–280

    Google Scholar 

  • Gutierrez-Cuesta J, Tajes M, Jiménez A, Coto-Montes A, Camins A, Pallàs M (2008) Evaluation of potential pro-survival pathways regulated by melatonin in a murine senescence model. J Pineal Res 45:497–505

    Google Scholar 

  • Hardeland R, Madrid JA, Tan DX, Reiter RJ (2012) Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 52:139–166

    Google Scholar 

  • Harman D (2006) Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci 1067:10–21

    Google Scholar 

  • Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661

    Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Google Scholar 

  • Herzog ED (2007) Neurons and networks in daily rhythms. Nat Rev Neurosci 8:790–802

    Google Scholar 

  • Hill SM, Blask DE, Xiang S, Yuan L, Mao L, Dauchy RT, Dauchy EM, Frasch T, Duplesis T (2011a) Melatonin and associated signaling pathways that control normal breast epithelium and breast cancer. J Mammary Gland Biol Neoplasia 16:235–245

    Google Scholar 

  • Hill SM, Cheng C, Yuan L, Mao L, Jockers R, Dauchy B, Frasch T, Blask DE (2011b) Declining melatonin levels and MT1 receptor expression in aging rats is associated with enhanced mammary tumor growth and decreased sensitivity to melatonin. Breast Cancer Res Treat 127:91–98

    Google Scholar 

  • Hill SM, Cheng C, Yuan L, Mao L, Jockers R, Dauchy B, Blask DE (2013) Age-related decline in melatonin and its MT1 receptor are associated with decreased sensitivity to melatonin and enhanced mammary tumor growth. Curr Aging Sci 6:125–133

    Google Scholar 

  • Hwang JW, Yao H, Caito S, Sundar IK, Rahman I (2013) Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic Biol Med 61C:95–110

    Google Scholar 

  • Imbesi M, Arslan AD, Yildiz S, Sharma R, Gavin D, Tun N, Manev H, Uz T (2009) The melatonin receptor MT1 is required for the differential regulatory actions of melatonin on neuronal ‘clock’ gene expression in striatal neurons in vitro. J Pineal Res 46:87–94

    Google Scholar 

  • Jablonska K, Pula B, Zemla A, Owczarek T, Wojnar A, Rys J, Ambicka A, Podhorska-Okolow M, Ugorski M, Dziegiel P (2013) Expression of melatonin receptor MT1 in cells of human invasive ductal breast carcinoma. J Pineal Res 54:334–345

    Google Scholar 

  • Jilg A, Moek J, Weaver DR, Korf HW, Stehle JH, von Gall C (2005) Rhythms in clock proteins in the mouse pars tuberalis depend on MT1 melatonin receptor signalling. Eur J Neurosci 22:2845–2854

    Google Scholar 

  • Jung-Hynes B, Reiter RJ, Ahmad N (2010a) Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer. J Pineal Res 48:9–19

    Google Scholar 

  • Jung-Hynes B, Huang W, Reiter RJ, Ahmad N (2010b) Melatonin resynchronizes dysregulated circadian rhythm circuitry in human prostate cancer cells. J Pineal Res 49:60–68

    Google Scholar 

  • Jung-Hynes B, Schmit TL, Reagan-Shaw SR, Siddiqui IA, Mukhtar H, Ahmad N (2011) Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in culture and in vivo in TRAMP model. J Pineal Res 50:140–149

    Google Scholar 

  • Karasek M (2004) Melatonin, human aging, and age-related diseases. Exp Gerontol 39:1723–1729

    Google Scholar 

  • Karasek M (2007) Does melatonin play a role in aging processes? J Physiol Pharmacol 58(Suppl 6):105–113

    Google Scholar 

  • Kauppinen TM, Gan L, Swanson RA (2013) Poly(ADP-ribose) polymerase-1-induced NAD(+) depletion promotes nuclear factor-κB transcriptional activity by preventing p65 de-acetylation. Biochim Biophys Acta 1833:1985–1991

    Google Scholar 

  • Kayumov L, Lowe A, Rahman SA, Casper RF, Shapiro CM (2007) Prevention of melatonin suppression by nocturnal lighting: relevance to cancer. Eur J Cancer Prev 16:357–362

    Google Scholar 

  • Kireev RA, Vara E, Tresguerres JA (2013) Growth hormone and melatonin prevent age-related alteration in apoptosis processes in the dentate gyrus of male rats. Biogerontology 14:431–442

    Google Scholar 

  • Kliukiene J, Tynes T, Andersen A (2001) Risk of breast cancer among Norwegian women with visual impairment. Br J Cancer 84:397–399

    Google Scholar 

  • Knower KC, To SQ, Takagi K, Miki Y, Sasano H, Simpson ER, Clyne CD (2012) Melatonin suppresses aromatase expression and activity in breast cancer associated fibroblasts. Breast Cancer Res Treat 132:765–771

    Google Scholar 

  • Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15(Spec No 2):R271–R277

    Google Scholar 

  • Kornhauser JM, Mayo KE, Takahashi JS (1996) Light, immediate-early genes, and circadian rhythms. Behav Genet 26(3):221–240

    Google Scholar 

  • Kuhlman SJ, McMahon DG (2006) Encoding the ins and outs of circadian pacemaking. J Biol Rhythms 21:470–481

    Google Scholar 

  • Lie JA, Kjuus H, Zienolddiny S, Haugen A, Stevens RG, Kjærheim K (2011) Night work and breast cancer risk among Norwegian nurses: assessment by different exposure metrics. Am J Epidemiol 173:1272–1279

    Google Scholar 

  • Lie JA, Kjuus H, Zienolddiny S, Haugen A, Kjærheim K (2013) Breast cancer among nurses: is the intensity of night work related to hormone receptor status? Am J Epidemiol 178:110–117

    Google Scholar 

  • Lim HD, Kim YS, Ko SH, Yoon IJ, Cho SG, Chun YH, Choi BJ, Kim EC (2012) Cytoprotective and anti-inflammatory effects of melatonin in hydrogen peroxide-stimulated CHON-001 human chondrocyte cell line and rabbit model of osteoarthritis via the SIRT1 pathway. J Pineal Res 53:225–237

    Google Scholar 

  • Liu R, Fu A, Hoffman AE, Zheng T, Zhu Y (2013) Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways. BMC Cell Biol 14:1

    Google Scholar 

  • Marmorstein R (2004) Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deactylases. Biochem Soc Trans 32:904–909

    Google Scholar 

  • Martínez-Campa C, González A, Mediavilla MD, Alonso-González C, Alvarez-García V, Sánchez-Barceló EJ, Cos S (2009) Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br J Cancer 101:1613–1619

    Google Scholar 

  • Mediavilla MD, Sanchez-Barcelo EJ, Tan DX, Manchester L, Reiter RJ (2010) Basic mechanisms involved in the anti-cancer effects of melatonin. Curr Med Chem 17:4462–4481

    Google Scholar 

  • Megdal SP, Kroenke CH, Laden F, Pukkala E, Schernhammer ES (2005) Night work and breast cancer risk: a systematic review and meta-analysis. Eur J Cancer 41:2023–2032

    Google Scholar 

  • Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    Google Scholar 

  • Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462

    Google Scholar 

  • Møller M, Sparre T, Bache N, Roepstorff P, Vorum H (2007) Proteomic analysis of day-night variations in protein levels in the rat pineal gland. Proteomics 7:2009–2018

    Google Scholar 

  • Monsees GM, Kraft P, Hankinson SE, Hunter DJ, Schernhammer ES (2012) Circadian genes and breast cancer susceptibility in rotating shift workers. Int J Cancer 131:2547–2552

    Google Scholar 

  • Mormont MC, Lévi F (1997) Circadian-system alterations during cancer processes: a review. Int J Cancer 70:241–247

    Google Scholar 

  • Obrietan K, Impey S, Smith D, Athos J, Storm DR (1999) Circadian regulation of cAMP response element-mediated gene expression in the suprachiasmatic nuclei. J Biol Chem 274:17748–17756

    Google Scholar 

  • Oprea-Ilies G, Haus E, Sackett-Lundeen L, Liu Y, McLendon L, Busch R, Adams A, Cohen C (2013) Expression of melatonin receptors in triple negative breast cancer (TNBC) in African American and Caucasian women: relation to survival. Breast Cancer Res Treat 137:677–687

    Google Scholar 

  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–527

    Google Scholar 

  • Pandi-Perumal SR, Smits M, Spence W, Srinivasan V, Cardinali DP, Lowe AD, Kayumov L (2007) Dim light melatonin onset (DLMO): a tool for the analysis of circadian phase in human sleep and chronobiological disorders. Prog Neuropsychopharmacol Biol Psychiatry 31:1–11

    Google Scholar 

  • Pardo B, Gómez-González B, Aguilera A (2009) DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci 66:1039–1056

    Google Scholar 

  • Peplonska B, Bukowska A, Sobala W, Reszka E, Gromadzinska J, Wasowicz W, Lie JA, Kjuus H, Ursin G (2012) Rotating night shift work and mammographic density. Cancer Epidemiol Biomarkers Prev 21:1028–1037

    Google Scholar 

  • Pevet P, Challet E (2011) Melatonin: both master clock output and internal time-giver in the circadian clocks network. J Physiol Paris 105:170–182

    Google Scholar 

  • Pfeffer M, Müller CM, Mordel J, Meissl H, Ansari N, Deller T, Korf HW, von Gall C (2009) The mammalian molecular clockwork controls rhythmic expression of its own input pathway components. J Neurosci 29:6114–6123

    Google Scholar 

  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605

    Google Scholar 

  • Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. Nature 415:493

    Google Scholar 

  • Rabstein S, Harth V, Pesch B, Pallapies D, Lotz A, Justenhoven C, Baisch C, Schiffermann M, Haas S, Fischer HP, Heinze E, Pierl C, Brauch H, Hamann U, Ko Y, Brüning T (2013) Night work and breast cancer estrogen receptor status – results from the German GENICA study. Scand J Work Environ Health 39:448–455. pii: 3360

    Google Scholar 

  • Ram PT, Dai J, Yuan L, Dong C, Kiefer TL, Lai L, Hill SM (2002) Involvement of the mt1 melatonin receptor in human breast cancer. Cancer Lett 179:141–150

    Google Scholar 

  • Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180

    Google Scholar 

  • Reiter RJ, Rosales-Corral SA, Manchester LC, Tan DX (2013) Peripheral reproductive organ health and melatonin: ready for prime time. Int J Mol Sci 14:7231–7272

    Google Scholar 

  • Richter HG, Torres-Farfán C, Rojas-García PP, Campino C, Torrealba F, Serón-Ferré M (2004) The circadian timing system: making sense of day/night gene expression. Biol Res 37:11–28. Erratum in Biol Res. 2004;37:357-8

    Google Scholar 

  • Robertson AB, Klungland A, Rognes T, Leiros I (2009) DNA repair in mammalian cells: base excision repair: the long and short of it. Cell Mol Life Sci 66:981–993

    Google Scholar 

  • Rossetti S, Corlazzoli F, Gregorski A, Azmi NH, Sacchi N (2012a) Identification of an estrogen-regulated circadian mechanism necessary for breast acinar morphogenesis. Cell Cycle 11:3691–3700

    Google Scholar 

  • Rossetti S, Esposito J, Corlazzoli F, Gregorski A, Sacchi N (2012b) Entrainment of breast (cancer) epithelial cells detects distinct circadian oscillation patterns for clock and hormone receptor genes. Cell Cycle 11:350–360

    Google Scholar 

  • Sánchez-Hidalgo M, Guerrero JM, Villegas I, Packham G, de la Lastra CA (2012) Melatonin, a natural programmed cell death inducer in cancer. Curr Med Chem 19:3805–3821

    Google Scholar 

  • Sauve AA, Wolberger C, Schramm VL, Boeke JD (2006) The biochemistry of sirtuins. Annu Rev Biochem 75:435–465

    Google Scholar 

  • Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA (2001) Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst 93:1563–1568

    Google Scholar 

  • Schernhammer ES, Rosner B, Willett WC, Laden F, Colditz GA, Hankinson SE (2004) Epidemiology of urinary melatonin in women and its relation to other hormones and night work. Cancer Epidemiol Biomarkers Prev 13:936–943

    Google Scholar 

  • Sekaran S, Lupi D, Jones SL, Sheely CJ, Hattar S, Yau KW, Lucas RJ, Foster RG, Hankins MW (2005) Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Curr Biol 15:1099–1107

    Google Scholar 

  • Sellix MT, Evans JA, Leise TL, Castanon-Cervantes O, Hill DD, DeLisser P, Block GD, Menaker M, Davidson AJ (2012) Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators. J Neurosci 32:16193–16202

    Google Scholar 

  • Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, Lin C, Leach C, Cannady RS, Cho H, Scoppa S, Hachey M, Kirch R, Jemal A, Ward E (2012) Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 62:220–241

    Google Scholar 

  • Smirnov AN (2001) Nuclear melatonin receptors. Biochemistry (Mosc) 66:19–26

    Google Scholar 

  • Srinivasan V, Pandi-Perumal SR, Brzezinski A, Bhatnagar KP, Cardinali DP (2011) Melatonin, immune function and cancer. Recent Pat Endocr Metab Immune Drug Discov 5:109–123

    Google Scholar 

  • Stevens RG (1987) Electric power use and breast cancer: a hypothesis. Am J Epidemiol 125:556–561

    Google Scholar 

  • Stevens RG (2009) Light-at-night, circadian disruption and breast cancer: assessment of existing evidence. Int J Epidemiol 38:963–970

    Google Scholar 

  • Stevens RG, Rea MS (2001) Light in the built environment: potential role of circadian disruption in endocrine disruption and breast cancer. Cancer Causes Control 12:279–287

    Google Scholar 

  • Stevens RG, Blask DE, Brainard GC, Hansen J, Lockley SW, Provencio I, Rea MS, Reinlib L (2007) Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases. Environ Health Perspect 115:1357–1362

    Google Scholar 

  • Stevens RG, Hansen J, Costa G, Haus E, Kauppinen T, Aronson KJ, Castaño-Vinyals G, Davis S, Frings-Dresen MH, Fritschi L, Kogevinas M, Kogi K, Lie JA, Lowden A, Peplonska B, Pesch B, Pukkala E, Schernhammer E, Travis RC, Vermeulen R, Zheng T, Cogliano V, Straif K (2011) Considerations of circadian impact for defining ‘shift work’ in cancer studies: IARC Working Group Report. Occup Environ Med 68:154–162

    Google Scholar 

  • Takumi T, Matsubara C, Shigeyoshi Y, Taguchi K, Yagita K, Maebayashi Y, Sakakida Y, Okumura K, Takashima N, Okamura H (1998) A new mammalian period gene predominantly expressed in the suprachiasmatic nucleus. Genes Cells 3:167–176

    Google Scholar 

  • Tischkau SA, Mitchell JW, Tyan SH, Buchanan GF, Gillette MU (2003) Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J Biol Chem 278:718–723

    Google Scholar 

  • Von Gall C, Stehle JH, Weaver DR (2002) Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res 309:151–162

    Google Scholar 

  • Witt-Enderby PA, Bennett J, Jarzynka MJ, Firestine S, Melan MA (2003) Melatonin receptors and their regulation: biochemical and structural mechanisms. Life Sci 72:2183–2198

    Google Scholar 

  • Xiang S, Mao L, Duplessis T, Yuan L, Dauchy R, Dauchy E, Blask DE, Frasch T, Hill SM (2012) Oscillation of clock and clock controlled genes induced by serum shock in human breast epithelial and breast cancer cells: regulation by melatonin. Breast Cancer (Auckl) 6:137–150

    Google Scholar 

  • Yang X, Wood PA, Ansell CM, Quiton DF, Oh EY, Du-Quiton J, Hrushesky WJ (2009a) The circadian clock gene Per1 suppresses cancer cell proliferation and tumor growth at specific times of day. Chronobiol Int 26:1323–1339

    Google Scholar 

  • Yang X, Wood PA, Oh EY, Du-Quiton J, Ansell CM, Hrushesky WJ (2009b) Down regulation of circadian clock gene Period 2 accelerates breast cancer growth by altering its daily growth rhythm. Breast Cancer Res Treat 117:423–431

    Google Scholar 

  • Yuan L, Collins AR, Dai J, Dubocovich ML (2002) Hill SM.MT(1) melatonin receptor overexpression enhances the growth suppressive effect of melatonin in human breast cancer cells. Mol Cell Endocrinol 192:147–156

    Google Scholar 

  • Zienolddiny S, Haugen A, Lie JA, Kjuus H, Haugen Anmarkrud K, Kjaerheim K (2013) Analysis of polymorphisms in the circadian-related genes and breast cancer risk in the Norwegian nurses working night shifts. Breast Cancer Res 15:R53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Engin M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Engin, A., Engin, A.B. (2015). Night Shifts and Melatonin: Relevance to Age and Breast Cancer. In: Engin, A., Engin, A. (eds) Tryptophan Metabolism: Implications for Biological Processes, Health and Disease. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15630-9_12

Download citation

Publish with us

Policies and ethics