Skip to main content

Large-Scale Thermo-chemical Structure of the Deep Mantle: Observations and Models

  • Chapter
  • First Online:
The Earth's Heterogeneous Mantle

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Seismic tomography indicates that the lowermost mantle, from 2400 km down to the core–mantle boundary (CMB) is strongly heterogeneous at large wavelengths. The most striking features are two large low-shear-wave velocity provinces (LLSVPs), where shear-wave velocity drops by a few percent compared to averaged mantle. Several seismic observations further show that lowermost mantle seismic anomalies cannot be purely thermal in origin. Compositional anomalies are required to fully explain observations like the anti-correlation between shear- and bulk-sound velocities, and the distribution of density mapped by normal modes. In the meantime, models of thermo-chemical convection indicate that reservoirs of dense, chemically differentiated material can be maintained in the lowermost mantle over long periods of time and that thermal plumes rising up to the surface are generated at the surface of these reservoirs. Model parameter searches indicate that maintaining such reservoirs requires a moderate density contrast between dense and regular material and a large thermal viscosity contrast . Current models of thermo-chemical convection also explain details revealed by travel time and seismic waveform data, in particular the LLSVP sharp edges, and the distribution of plumes at the surface of LLSVPs. A remaining question is the detailed nature of the lower mantle large-scale chemical heterogeneities . Reservoirs of dense material may result either from early partial differentiation of the mantle or recycling of oceanic crust (MORB). Seismic sensitivities inferred from a coherent mineral physics database suggest that LLSVPs are better explained by warm material enriched in iron and silicate, than by high-pressure MORB. By contrast, if colder than the surrounding mantle by ~400 K, high-pressure MORB explains well seismic velocity anomalies in regions where ancient slabs are expected to rest, e.g., beneath the Japan subduction zones and beneath Central and South America. The post-pervoskite phase certainly plays a significant role in explaining seismic observations, in particular the D″ discontinuity, but is unlikely to explain all seismic observations alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albers M, Christensen UR (1996) The excess temperature of plumes rising from the core-mantle boundary. Geophys Res Lett 23:3567–3570

    Google Scholar 

  • Allègre CJ, Moreira M (2004) Rare gas systematic and the origin of oceanic islands: the key role of entrainment at the 670 km boundary layer. Earth Planet Sci Lett 228:85–92

    Google Scholar 

  • Allègre CJ, Hofmann AO, Nions K (1996) The Argon constraints on mantle structure. Geophys Res Lett 23:3555–3557

    Google Scholar 

  • Amit H, Aubert J, Hulot G (2010) Stationary, oscillating or drifting mantle-driven geomagnetic flux patches? J Geophys Res 115. doi:10.1029/2009JB006542

  • Anderson OL (1995) Equations of state of solids for geophysics and ceramic sciences. Oxford University Press, Oxford 405 pp

    Google Scholar 

  • Andrault D, Muñoz M, Bolfan-Casanova N, Guignot N, Perrillat J-P, Anquilanti G, Pascarelli S (2009) Experimental evidence for perovskite and post-perovskite coexistence throughout the whole D″ region. Earth Planet Sci Lett 293:90–96

    Google Scholar 

  • Antolik M, Gu YJ, Ekström G, Dziewonski AM (2003) J362D28: a new joint model of compressional and shear velocity in the Earth’s mantle. Geophys J Int 153:443–466

    Google Scholar 

  • Anzellini S, Dewaele A, Mezouar M, Loubeyre P, Morard G (2013) Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science 340:464–466

    Google Scholar 

  • Aubert J, Amit H, Hulot G (2007) Detecting thermal boundary control in surface flows from numerical dynamos. Phys Earth Planet Inter 160:143–156

    Google Scholar 

  • Austermann J, Kaye BT, Mitrovica JX, Huybers P (2014) A statistical analysis of the correlation between large igneous provinces and lower mantle seismic structure. Geophys J Int 197:1–9

    Google Scholar 

  • Bower DJ, Gurnis M, Seton M (2013) Lower mantle structure from paleogeographically constrained dynamic Earth models. Geochem Geophys Geosys 14. doi:10.1029/2012GC004267

  • Boyet M, Carlson RW (2006) 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309:576–581

    Google Scholar 

  • Bunge H-P (2005) Low plume excess temperature and high core heat flux inferred from non-adiabatic geotherms in internally heated mantle circulation models. Phys Earth Planet Inter 153:3–10

    Google Scholar 

  • Burke K, Torsvik TH (2004) Derivation of large Igneous Provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet Sci Lett 227:531–538

    Google Scholar 

  • Burke K, Steinberger B, Torsvik TH, Smethurst MA (2008) Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet Sci Lett 265:49–60

    Google Scholar 

  • Campbell IH, Griffiths RW (1990) Implications of mantle plume structure for the evolution of flood basalts. Earth Planet Sci Lett 99:79–93

    Google Scholar 

  • Caracas R, Cohen RE (2005) Effects of chemistry on the stability and elasticity of the perovskite and post-perovskite phases in the MgSiO3–FeSiO3–Al2O3 system and implications for the lowermost mantle. Geophys Res Lett 32. doi:10.1029/2005GL023164

  • Caracas R, Cohen RE (2007) Effect of chemistry on the physical properties of perovskite and post-perovskite. In: Hirose K et al (eds) Post-perovskite the last mantle phase transition, vol 174. Geophysical Monograph. American Geophysical Union, pp 115–128

    Google Scholar 

  • Caro G, Bourdon B, Birck JL, Moorbath S (2003) 146Sm-142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature 423:428–432

    Google Scholar 

  • Caro G, Bourdon B, Wood BJ, Corgne A (2004) Trace-element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature 436:246–249

    Google Scholar 

  • Christensen UR (1989) Models of mantle convection: one or several layers. Phil Trans R Soc London A 328:417–424

    Google Scholar 

  • Christensen UR, Hofmann AW (1994) Segregation of subducted oceanic crust in the convecting mantle. J Geophys Res 99:19867–19884

    Google Scholar 

  • Christensen UR, Yuen DA (1985) Layered convection induced by phase transitions. J Geophys Res 90:10291–10300

    Google Scholar 

  • Cobden L, Thomas C (2013) The origin of D″ reflections a systematic study of seismic array data sets. Geophys J Int 194:1091–1118

    Google Scholar 

  • Cobden L, Mosca I, Trampert J, Ritsema J (2012) On the likelihood of post-perovskite near the core-mantle boundary: a statistical interpretation of seismic observations. Phys Earth Planet Inter 210–211:21–35

    Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonisation. Earth Planet Sci Lett 236:524–541

    Google Scholar 

  • Conrad CP, Steinberger B, Torsvik TH (2013) Stability of active mantle upwelling revealed by net characteristics of plate tectonics. Nature 498:479–482

    Google Scholar 

  • Davaille A (1999) Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402:756–760

    Google Scholar 

  • Davies DR, Goes S, Davies JH, Schuberth BSA, Bunge H-P, Ritsema J (2012) Reconciling dynamic and seismic models of Earth’s lower mantle: the dominant role of thermal heterogeneity. Earth Planet Sci Lett 353–354:253–269

    Google Scholar 

  • Deschamps, (2015) Lower mantle electrical conductivity inferred from probabilistic tomography. Terr Atmos Ocean Sci 26:27–40. doi:10.3319/TAO.2014.08.19.03(GRT)

  • Deschamps F, Tackley PJ (2008) Exploring the model space of thermo-chemical convection I—principles and influence of the rheological parameters. Phys Earth Planet Inter 171:357–373

    Google Scholar 

  • Deschamps F, Tackley PJ (2009) Searching for models of thermo-chemical convection that explain probabilistic tomography. II. Influence of physical and compositional parameters. Phys Earth Planet Inter 176:1–18

    Google Scholar 

  • Deschamps F, Trampert J (2003) Mantle tomography and its relation to temperature and composition. Phys Earth Planet Inter 140:277–291

    Google Scholar 

  • Deschamps F, Trampert J, Tackley PJ (2007) Thermo-chemical structure of the lower mantle: seismological evidence and consequences for geodynamics. In Yuen DA et al (eds) Superplume: beyond plate tectonics. Springer, Berlin, pp 293–320

    Google Scholar 

  • Deschamps F, Kaminski E, Tackley PJ (2011) A deep mantle origin for the primitive signature of Ocean Island Basalt. Nat Geosci 4:879–882

    Google Scholar 

  • Deschamps F, Cobden L, Tackley PJ (2012) The primitive nature of large low shear-wave velocity provinces. Earth Planet Sci Lett 349–350:198–208

    Google Scholar 

  • Dobson DP, Miyajima N, Nestola F, Alvaro M, Casati N, Liebske C, Wood IG, Walker AM (2013) Strong inheritance of texture between perovskite and post-perovskite in the D″ layer. Nat Geosci 6:575–578

    Google Scholar 

  • Dziewonski AM, Lekic V, Romanowicz B (2010) Mantle anchor structure: an argument for bottom up tectonics. Earth Planet Sci Lett 299:69–79

    Google Scholar 

  • Farley KA, Natland JH, Craig H (1992) Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet Sci Lett 111:183–199

    Google Scholar 

  • Farnetani CG (1997) Excess temperature of mantle plumes: the role of chemical stratification across D″. Geophys Res Lett 24:1583–1586

    Google Scholar 

  • Fukao Y, Widiyantoro S, Obayashi M (2001) Stagnant slabs in the upper and lower transition regions. Rev Geophys 39:291–323

    Google Scholar 

  • Garnero EJ, Helmberger DV (1995) A very slow basal layer underlying large-scale low-velocity anomalies in the lower mantle beneath the Pacific: evidence from core phases. Earth Planet Sci Lett 91:161–176

    Google Scholar 

  • Gurnis M (1986) The effect of chemical density differences on convective mixing in the Earth’s mantle. J Geophys Res 91:11407–11419

    Google Scholar 

  • Hansen U, Yuen DA (1988) Numerical simulations of thermo-chemical instabilities at the core-mantle boundary. Nature 334:237–240

    Google Scholar 

  • He Y, Wen L (2009) Structural features and shear-velocity structure of the “Pacific Anomaly”. J Geophys Res 114. doi:10.1029/2008JB005814

  • Hernlund J, Houser C (2008) On the statistical distribution of seismic velocities in Earth’s deep mantle. Earth Planet Sci Lett 265:423–437

    Google Scholar 

  • Hernlund J, Thomas C, Tackley PJ (2005) A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature 434:882–886

    Google Scholar 

  • Hirose K (2002) Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. J Geophys Res 107. doi:10.1029/2001JB000597

  • Hirose K (2007) Discovery of post-perovskite phase transition and the nature of the D″ layer. In: Hirose K et al (eds) Post-perovskite the last mantle phase transition, vol 174. Geophysical Monograph. American Geophysical Union, pp 19–35

    Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Google Scholar 

  • Houser C, Masters G, Shearer P, Laske G (2008) Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys J Int 174:195–212

    Google Scholar 

  • Humayun M, Qin L, Norman ND (2004) Geochemical evidence for excess iron in the Mantle beneath Hawaii. Science 306:91–94

    Google Scholar 

  • Hutko AR, Lay T, Revenaugh J, Garnero EJ (2008) Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle. Science 320:1070–1074

    Google Scholar 

  • Ishii M, Tromp J (1999) Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science 285:1231–1236

    Google Scholar 

  • Jackson MG, Carlson RW, Kurz MD, Kempton PD, Francis D, Blusztajn J (2010) Evidence for the survival of the oldest terrestrial mantle reservoir. Nature 466:853–856

    Google Scholar 

  • Jaupart C, Molnar P, Cottrell E (2007) Instability of a chemically dense layer heated from below and overlain by a deep less viscous fluid. J Fluid Mech 572:433–469

    Google Scholar 

  • Javoy M, Kaminski E, Guyot F, Andrault D, Sanloup C, Moreira M, Labrosse S, Jambon A, Agrinier P, Davaille A, Jaupart C (2010) The chemical composition of the Earth: enstatite chondrite model. Earth Planet Sci Lett 293:259–268

    Google Scholar 

  • Jellinek AM, Manga M (2002) The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature 418:760–763

    Google Scholar 

  • Kageyama A, Sato T (2004) “Yin-Yang grid”: an overset grid in spherical geometry. Geochem Geophys Geosyst 5. doi:10.1029/2004GC000734

  • Kaminski E, Javoy M (2013) A two-stage scenario for the formation of the Earth’s mantle and core. Earth Planet Sci Lett 365:97–107

    Google Scholar 

  • Kaminski E, Javoy M (2014) The composition of the deep Earth. In: Khan A et al (eds) The heterogeneous Earth mantle (in press)

    Google Scholar 

  • Kárason H, van der Hilst RD (2000) Constraints on mantle convection from mantle tomography. In: Richards MA et al (eds) The history and dynamics of global plate motions, vol 121. Geophysical Monograph. American Geophysical Union, pp 277–288

    Google Scholar 

  • Kiefer B, Stixrude L, Wentzcovitch RM (2002) Elasticity of (Mg, Fe)SiO3 perovskite at high pressures. Geophys Res Lett 29. doi:10.1029/2002GL014683

  • Kung J, Li B, Weidner DJ, Zhang J, Liebermann RC (2002) Elasticity of (Mg 0.83, Fe 0.17) O ferropericlase at high pressure: ultrasonic measurements in conjunction with X-radiation techniques. Earth Planet Sci Lett 203:557–566

    Google Scholar 

  • Kustowski B, Ekström G, Dziewonski AM (2008) Anisotropic shear-wave velocity structure of the Earth’s mantle: a global model. J Geophys Res 113:B06306. doi:10.1029/2007JB005169

    Google Scholar 

  • Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450:866–869

    Google Scholar 

  • Le Bars M, Davaille A (2004) Whole layer convection in a homogeneous planetary mantle. J Geophys Res 109. doi:10.1029/2003JB002617

  • Lee C-T, Luffi P, Hoink T, Li J, Dasgupta R, Hernlund J (2010) Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature 463:930–933

    Google Scholar 

  • Lekic V, Cottaar S, Dziewonski AM, Romanowicz B (2012) Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet Sci Lett 357–358:68–77

    Google Scholar 

  • Li M, McNamara AK (2013) The difficulty for subducted oceanic crust to accumulate at the Earth’s core-mantle boundary. J Geophys Res 118:1807–1816. doi:10.1002/jgrb.50156

    Google Scholar 

  • Li X-D, Romanowicz B (1996) Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. J Geophys Res 101:22245–22272

    Google Scholar 

  • Li Y, Deschamps F, Tackley PJ (2014a) The stability and structure of primordial reservoirs in the lower mantle: insights from models of thermo-chemical convection in 3-D spherical geometry. Geophys J Int (submitted)

    Google Scholar 

  • Li M, McNamara AK, Garnero EJ (2014b) Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nat Geosci 7:366–370

    Google Scholar 

  • Machetel P, Weber P (1991) Intermittent layered convection in a model mantle with an endothermic phase change at 670 km. Nature 350:55–57

    Google Scholar 

  • Mao W, Shen G, Prakapenka VB, Meng Y, Campbell AJ, Heinz D, Shu J, Hemley RJ, Mao HK (2004) Ferromagnesian perovskite silicates in the D″ layer of the Earth. Proc Natl Acad Sci USA 101:15867–15869

    Google Scholar 

  • Mao W, Campbell AJ, Prakapenka VB, Hemley RJ, Mao H-K (2007) Effect of iron on the properties of post-perovskite silicate. In: Hirose K et al (eds) Post-perovskite the last mantle phase transition, vol 174. Geophysical Monograph. American Geophysical Union, pp 37–46

    Google Scholar 

  • Masters G, Laske G, Bolton H, Dziewonski AM (2000) The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implication for thermal and chemical structure. In Karato S-I et al (eds) Earth’s deep interior: mineral physics and tomography from the atomic to the global scale, vol 117. Geophysical Monograph Series. American Geophysical Union, Washington, DC, pp 63–87

    Google Scholar 

  • McNamara AK, Zhong S (2004) Thermochemical structures within a spherical mantle. J Geophys Res 109. doi:10.1029/2003JB002847

  • McNamara AK, Zhong S (2005) Thermochemical structure beneath Africa and the Pacific ocean. Nature 437:1136–1139

    Google Scholar 

  • McNamara AK, Garnero EJ, Rost S (2010) Tracking deep mantle reservoirs with ultra-low velocity zones. Earth Planet Sci Lett 299:1–9

    Google Scholar 

  • Mittelstaedt E, Tackley PJ (2005) Plume heat flow is much less than CMB heat flow. Earth Planet Sci Lett 241:202–210

    Google Scholar 

  • Mosca I, Cobden L, Deuss A, Ritsema J, Trampert J (2012) Seismic and mineralogical structures of the lower mantle from probabilistic tomography. J Geophys Res 117:B06304. doi:10.1029/2011JB008851

    Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858

    Google Scholar 

  • Nakagawa T, Tackley PJ (2004) Effects of thermo-chemical convection on the thermal evolution of the Earth’s core. Earth Planet Sci Lett 220:207–219

    Google Scholar 

  • Nakagawa T, Tackley PJ (2005a) The interaction between the post-perovskite phase change and a thermo-chemical boundary layer near the core-mantle boundary. Earth Planet Sci Lett 238:204–216

    Google Scholar 

  • Nakagawa T, Tackley PJ (2005b) Deep mantle heat flow and thermal evolution of Earth’s core in thermo-chemical multiphase models of mantle convection. Geochem Geophys Geosyst 6. doi:10.1029/2005GC000967

  • Nakagawa T, Tackley PJ (2014) Influence of combined primordial layering and recycled MORB on the coupled thermal evolution of Earth’s mantle and core. Geochem Geophys Geosyst 15:619–633. doi:10.1002/2013GC005128

    Google Scholar 

  • Nakagawa T, Tackley PJ, Deschamps F, Connolly JAD (2010) The influence of MORB and harzburgite composition on thermo-chemical mantle convection in a 3D Spherical shell with self-consistently calculated mineral physics. Earth Planet Sci Lett 296:403–412

    Google Scholar 

  • Ni S, Helmberger D (2003) Ridge-like lower mantle structure beneath South Africa. J Geophys Res 108. doi:10.1029/2001JB001545

  • Ni S, Tan E, Gurnis M, Helmberger D (2002) Sharp sides to the African superplumes. Science 296:1850–1852

    Google Scholar 

  • Nomura R, Ozawa H, Tateno S, Hirose K, Hernlund J, Muto S, Ishii H, Hiraoka N (2011) Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature 473:199–203

    Google Scholar 

  • Nomura R, Hirose K, Uesugi K, Ohishi Y, Tsuchiyama A, Miyake A, Ueno Y (2014) Low core-mantle boundary temperature inferred from the solidus of pyrolite. Science 343:522–525

    Google Scholar 

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature 430:445–448

    Google Scholar 

  • Ohta K, Hirose K, Lay T, Stat N, Ohishi Y (2008) Phase transitions in pyrolite and MORB at lowermost mantle conditions: implication for a MORB-rich pile above the core-mantle boundary. Earth Planet Sci Lett 267:107–117

    Google Scholar 

  • Olson P, Kincaid C (1991) Experiment on the interaction of thermal convection and compositional layering at the base of the mantle. J Geophys Res 96:4347–4354

    Google Scholar 

  • Parmentier EM, Sotin C, Travis BJ (1994) Turbulent 3-D thermal convection in an infinite Prandtl number, volumetrically heated fluid—implications for mantle dynamics. Geophys J Int 116:241–251

    Google Scholar 

  • Resovsky JS, Trampert J (2003) Using probabilistic seismic tomography to test mantle velocity-density relationships. Earth Planet Sci Lett 215:121–134

    Google Scholar 

  • Ricard Y, Mattern E, Matas J (2005) Synthetic tomographic images of slabs from mineral physics. In: van der Hilst RD et al (eds) Earth’s deep mantle: Structure, composition and evolution, vol 160. American Geophysical Union, Geophysical Monograph, pp 285–302

    Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the Earth mantle. McGraw-Hill, New York, 618 pp

    Google Scholar 

  • Ritsema J, van Heijst H (2000) Seismic imaging of structural heterogeneity in Earth’s mantle: evidence for large-scale mantle flow. Sci Progress 83:243–259

    Google Scholar 

  • Ritsema J, van Heijst H, Woodhouse JH (1999) Complex shear-wave velocity structure imaged beneath Africa and Iceland. Science 286:1925–1928

    Google Scholar 

  • Ritsema J, McNamara AK, Bull AL (2007) Tomographic filtering of geodynamic models: implications for model interpretation and large-scale mantle structure. J Geophys Res 112. doi:10.1029/2006JB004566

  • Ritsema J, Deuss A, vanHeijst H-J, Woodhouse JH (2011) S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys J Int 184:1223–1236

    Google Scholar 

  • Rost S, Garnero EJ, Williams Q, Manga M (2005) Seismological constraints on a possible plume root at the core–mantle boundary. Nature 435:666–669

    Google Scholar 

  • Schott B, Yuen DA (2004) Influences of dissipation and rheology on mantle plumes coming from the D″-layer. Phys Earth Planet Inter 146:139–145

    Google Scholar 

  • Schuberth BSA, Bunge H-P, Ritsema J (2009) Tomographic filtering of high resolution mantle circulation models: can seismic heterogeneity be explained by temperature alone? Geochem Geophys Geosyst 10. doi:10.1029/2009GC002401

  • Schuberth BSA, Zaroli C, Nolet G (2011) Synthetic seismograms for a synthetic Earth: long-period P- and S-wave traveltime variations can be explained by temperature alone. Geophys J Int 188:1393–1412

    Google Scholar 

  • Semenov A, Kuvshinov A (2012) Global 3-D imaging of mantle conductivity based on inversion of observatory C-responses—II. Data analysis and results. Geophys J Int 191:965–992

    Google Scholar 

  • Sinmyo R, Hirose K, Muto S, Ohishi Y, Yasuhara A (2011) The valence state and partitioning of iron in the Earth’s lowermost mantle. J Geophys Res 116. doi:10.1029/2010JB008179

  • Solomatov VS (2007) Magma oceans and primordial mantle differentiation. In: Stevenson DJ (ed) Treatise on geophysics, vol 9., Earth formation and evolutionElsevier B.V., Amsterdam, pp 91–119

    Google Scholar 

  • Solomatov VS, Stevenson DJ (1993) Suspension in convective layers and style of differentiation of a terrestrial magma ocean. J Geophys Res 98:5375–5390

    Google Scholar 

  • Stackhouse S, Brodholt JP (2007) The high-temperature elasticity of MgSiO3 post-perovskite silicate. In: Hirose K et al (eds) Post-perovskite the last mantle phase transition,vol 174. Geophysical Monograph. American Geophysical Union, pp 99–114

    Google Scholar 

  • Stackhouse S, Brodholt JP, Wookey J, Kendal J-M, Price GD (2005) The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO3. Earth Planet Sci Lett 230:1–10

    Google Scholar 

  • Stixrude L, Lithgow-Bertelloni C (2011) Thermodynamics of mantle minerals—II. Phase equilibria. Geophys J Int 184:1180–1213

    Google Scholar 

  • Stuart FM, Lass-Evans S, Fitton JG, Ellam RM (2003) High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424:57–59

    Google Scholar 

  • Su W-J, Dziewonski AM (1997) Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys Earth Planet Inter 100:135–156

    Google Scholar 

  • Su W-J, Woodward RL, Dziewonski AM (1994) Degree 12 model of shear velocity heterogeneity in the mantle. J Geophys Res 99:6945–6980

    Google Scholar 

  • Tackley PJ (1998) Three-dimensional simulations of mantle convection with a thermo-chemical CMB boundary layer: D″? In: Gurnis M et al (eds) The core-mantle boundary region, vol 28. Geodynamical series, pp 231–253

    Google Scholar 

  • Tackley PJ (2002) Strong heterogeneity caused by deep mantle layering. Geochem Geophys Geosyst 3. doi:10.1029/2001GC000167

  • Tackley PJ (2008) Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Phys Earth Planet Inter 171:7–18

    Google Scholar 

  • Tackley PJ (2012) Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth Sci Rev 110:1–25

    Google Scholar 

  • Tackley PJ, King SD (2003) Testing the tracer ratio method for modelling active compositional fields in mantle convection simulations. Geochem Geophys Geosyst 4:Q08302

    Google Scholar 

  • Tackley PJ, Stevenson DJ, Glatzmaier GA, Schubert G (1993) Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle. Nature 361:699–704

    Google Scholar 

  • Tackley PJ, Stevenson DJ, Glatzmaier GA, Schubert G (1994) Effects of multiple phase transition in a 3-D spherical model of convection in Earth’s mantle. J Geophys Res 99:15877–15901

    Google Scholar 

  • Takeushi N, Morita Y, Xuyen ND, Zung NQ (2008) Extent of the low-velocity region in the lowermost mantle beneath the western Pacific detected by the Vietnamese Broadband Seismograph Array. Geophys Res Lett 35. doi:10.1029/2008GL033197

  • Tan E, Gurnis M (2005) Metastable superplumes and mantle compressibility. Geophys Res Lett 32. doi:10.1029/2005GL024190

  • Tan E, Gurnis M (2007) Compressible thermo-chemical convection and application to the lower mantle. J Geophys Res 112. doi:10.1029/2006JB004505

  • Tan E, Gurnis M, Han L (2002) Slabs in the lower mantle and their modulation of plume formation. Geochem Geophys Geosyst 3. doi:10.1029/2001GC000238

  • Tan E, Leng W, Zhong S, Gurnis M (2011) On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle. Geochem Geophys Geosyst 7. doi:10.1029/2011GC003665

  • Tanimoto T (1990) Long-wavelength S-wave velocity structure throughout the mantle. Geophys J Int 100:327–336

    Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2009) Determination of post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D” layer. Earth Planet Sci Lett 277:130–136. doi:10.1016/j.epsl.2008.10.004

    Google Scholar 

  • To A, Romanowicz B, Capdeville Y, Takeuchi N (2005) 3D effects of sharp boundaries at the border of the African and Pacific superplumes: observations and modeling. Earth Planet Sci Lett 233:137–153

    Google Scholar 

  • Tolstikhin IN, Kramers JD, Hofmann AW (2006) A chemical Earth model with whole mantle convection: the importance of a core–mantle boundary layer (D″) and its early formation. Chem Geol 226:79–99

    Google Scholar 

  • Torsvik TH, Steinberger B, Cocks LRM, Burke K (2008) Longitude: linking Earth’s ancient surface to its deep interior. Earth Planet Sci Lett 276:273–282

    Google Scholar 

  • Trampert J, Vacher P, Vlaar N (2001) Sensitivities of seismic velocities to temperature, pressure and composition in the lower mantle. Phys Earth Planet Inter 124:255–267

    Google Scholar 

  • Trampert J, Deschamps F, Resovsky JS, Yuen DA (2004) Probabilistic tomography maps significant chemical heterogeneities in the lower mantle. Science 306:853–856

    Google Scholar 

  • Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004a) Phase transition in MgSiO3 perovskite in the Earth’s lower mantle. Earth Planet Sci Lett 224:241–248

    Google Scholar 

  • Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004b) Elasticity of post-perovskite MgSiO3. Geophys Res Lett 31. doi:10.1029/2004GL020278

  • Vacher P, Verhoeven O (2007) Modelling the electrical conductivity of iron-rich minerals for planetary applications. Planet Space Sci 55:455–456

    Google Scholar 

  • van der Hilst RD, Kárason H (1999) Compositional heterogeneity in the bottom 1000 kilometers of Earth’s mantle: towards a hybrid convection model. Science 283:1885–1888

    Google Scholar 

  • van der Hilst RD, Widiyantoro S, Engdahl ER (1997) Evidence for deep mantle circulation from seismic tomography. Nature 386:578–584

    Google Scholar 

  • van Thienen P, van den Berg AP, Vlaar NJ (2004) Production and recycling of oceanic crust in the early Earth. Tectonophysics 386:41–65

    Google Scholar 

  • van Thienen P, van Summeren J, van der Hilst RD, van den Berg AP, Vlaar NJ (2005) Numerical study of the origin and stability of chemically distinct reservoirs deep in Earth’s mantle. In: van der Hilst RD et al (eds) Earth’s deep mantle: structure, evolution and composition, vol 160. American Geophysical Union, Geophysical Monograph, pp 117–136

    Google Scholar 

  • Wang Y, Wen L (2007) Geometry and P and S velocity structure of the “African anomaly”. J Geophys Res 112. doi:10.1029/2006JB004483

  • Williams Q, Garnero EJ (1996) Seismic evidence for partial melt at the base of the Earth mantle. Science 273:1528–1530

    Google Scholar 

  • Wookey J, Stackhouse S, Kendall JM, Brodholt J, Price GD (2005) Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature 438:1004–1007

    Google Scholar 

  • Wysession ME, Lay T, Revenaugh J, Williams Q, Garnero EJ, Jeanloz R, Kellogg LH (1998) The D″ discontinuity and its implications. In: Gurnis M et al (eds) The core-mantle boundary region, vol 28. Geodynamical series, pp 231–253

    Google Scholar 

  • Xu Y, Shankland TJ, Brent TP (2000) Laboratory based electrical conductivity in the Earth’s mantle. J Geophys Res 105:27865–27875

    Google Scholar 

  • Zhang N, Zhong S, Leng W, Li Z-X (2010) A model for the evolution of the Earth’s mantle structure since the early paleozoic. J Geophys Res 115. doi:10.1029/2009JB006896

Download references

Acknowledgments

We are grateful to Dan Bower and two other anonymous colleagues for their detailed and constructive reviews that helped improving the first version of this chapter. This work was funded by Academia Sinica (Taiwan) grant AS-102-CDA-M02, National Science Council of Taiwan (NSC) grant 101-2116-M-001-001-MY3, and Swiss National Science Fundation (SNF) grants 200021_129510 and 200021_149625. Models of thermo-chemical convection shown here were calculated on the ETH Linux cluster brutus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Deschamps .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deschamps, F., Li, Y., Tackley, P.J. (2015). Large-Scale Thermo-chemical Structure of the Deep Mantle: Observations and Models. In: Khan, A., Deschamps, F. (eds) The Earth's Heterogeneous Mantle. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-15627-9_15

Download citation

Publish with us

Policies and ethics