Skip to main content

Global Heterogeneity of the Lithosphere and Underlying Mantle: A Seismological Appraisal Based on Multimode Surface-Wave Dispersion Analysis, Shear-Velocity Tomography, and Tectonic Regionalization

  • Chapter
  • First Online:
Book cover The Earth's Heterogeneous Mantle

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Heterogeneity of the composition and physical state of the rocks within the Earth is reflected in variations in seismic wave speeds at depth. This seismic heterogeneity can be observed in a number of different ways, each yielding a complementary perspective on the Earth’s bulk properties, structure, and dynamics. A surface-wave dispersion diagram, constructed from millions of fundamental-mode and higher mode dispersion measurements around the world, shows variability around global averages for all modes and all frequencies that are included in it, with the largest variations seen for the fundamental-mode phase and group velocities at short periods (less than 30 and 40 s, respectively) that sample the highly heterogeneous crust and uppermost mantle. Seismic tomography turns large sets of measurements into models of three-dimensional wave speed variations at depth. Global shear-wave speed models have been in agreement since 1990s regarding heterogeneity in the upper mantle at thousands-of-kilometres scales. The rapid recent increase in global data sampling facilitated an increase in the tomographic resolution, and a number of today’s models show close agreement in the upper 200 km of the mantle at much shorter, hundreds-of-kilometres scale lengths. Greater disagreements between different models remain in the mantle transition zone. Our new model SL2013sv , constrained by an unprecedentedly large new data set of multimode waveform fits, demonstrates increased resolution compared to other existing models for a variety of features; it captures regional-scale heterogeneity globally, within both the upper mantle and the crust. A global stack of shear-velocity profiles extracted from SL2013sv shows a monotonic decrease in the amplitude of wave speed variations with depth, mirrored by a decrease in RMS variations in SL2013sv and other current models, from largest in the top 150–200 km to much smaller below 250 km. Regionalization of SL2013sv by means of cluster analysis, with no a priori information, provides an accurate tectonic regionalization of the entire Earth. The three oceanic and three continental types that naturally come out of the clustering differ by the age of the deep lithosphere. The results give a new perspective on the “depth of tectonics”—the depths down to which shear speed profiles (and, by inference, geotherms) beneath oceanic and continental regions of different ages are different. Old oceanic plates are underlain by higher shear-wave speeds compared to young- and intermediate-age oceans down to 200 km depth. At 200–250 km, all type-average mantle profiles converge, except for the Archean craton profile that shows distinctly higher velocities down to 250–280 km depths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam JM-C, Lebedev S (2012) Azimuthal anisotropy beneath southern Africa from very broad-band surface-wave dispersion measurements. Geophys J Int 191(1):155–174

    Article  Google Scholar 

  • Aki K, Christoffersen A, Husebye ES (1977) Determination of the three-dimensional seismic structure of the lithosphere. J Geophys Res 82:(277–296)

    Google Scholar 

  • Amaru ML (2006) Global travel time tomography with 3-D reference models. PhD thesis, Universiteit Utrech

    Google Scholar 

  • Babuska V, Cara M (1991) Seismic anisotropy in the earth. Kluwer Academic Press, Boston

    Book  Google Scholar 

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS 81:F897

    Google Scholar 

  • Becker TW, Boschi L (2002) A comparison of tomographic and geodynamic mantle models. Geochem Geophys Geosys 3

    Google Scholar 

  • Bedle H, van der Lee S (2009) S velocity variations beneath North America. J Geophys Res 114(B7)

    Google Scholar 

  • Bijwaard H, Spakman W, Engdahl ER (1998) Closing the gap between regional and global travel time tomography. J Geophys Res 103(B12):30055–30078

    Article  Google Scholar 

  • Boschi L, Ekström G (2002) New images of the Earths upper mantle from measurements of surface wave phase velocity anomalies. J Geophys Res 107(B4)

    Google Scholar 

  • Bozdag E, Trampert J (2008) On crustal corrections in surface wave tomography. Geophys J Int 172:1066–1082

    Article  Google Scholar 

  • Burdick S, van der Hilst RD, Vernon FL, Martynov V, Cox T, Eakins J, Karasu G, Tylell J, Astiz L, Pavlis GL (2012) Model update March 2011: upper mantle heterogeneity beneath North America from traveltime tomography with global and USArray Transportable Array data. Seismol Res Lett 83(1):23–28

    Article  Google Scholar 

  • Chevrot S, Zhao L (2007) Multiscale finite-frequency Rayleigh wave tomography of the Kaapvaal craton. Geophys J Int 169:201–215

    Article  Google Scholar 

  • Dahlen FA, Tromp J (1998) Theoretical global seismology. Princeton University Press, Princeton

    Google Scholar 

  • Darbyshire FA, Lebedev S (2009) Rayleigh wave phase-velocity heterogeneity and multilayered azimuthal anisotropy of the Superior Craton, Ontario. Geophys J Int 176:215–234

    Article  Google Scholar 

  • Debayle E, Ricard Y (2012) A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements. J Geophys Res 117(B10):1–24

    Google Scholar 

  • Debayle E, Kennett BLN, Priestley K (2005) Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia. Nature 433(7025):509–512

    Article  Google Scholar 

  • Deschamps F, Lebedev S, Meier T, Trampert J (2008) Stratified seismic anisotropy reveals past and present deformation beneath the East-central United States. Earth Planet Sci Lett 274(3–4):489–498

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet 25:297–356

    Article  Google Scholar 

  • Dziewónski AM, Hager B, O’Connell RJ (1977) Large-scale heterogeneities in the lower mantle. J Geophys Res 82:239–255

    Article  Google Scholar 

  • Ekström G (2011) A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25–250 s. Geophys J Int 187:1668–1686

    Article  Google Scholar 

  • Endrun B, Lebedev S, Meier T, Tirel C, Friederich W (2011) Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy. Nat Geosci 4(3):203–207

    Article  Google Scholar 

  • Engdahl ER, van der Hilst RD, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. B Seismo Soc Am 88(3):722–743

    Google Scholar 

  • Ferreira AMG, Woodhouse JH, Visser K, Trampert J (2010) On the robustness of global radially anisotropic surface wave tomography. J Geophys Res 115(B4):1–16

    Google Scholar 

  • Forsyth DW, Scheirer D, Webb S, The MELT Seismic Team (1998) Imaging the deep seismic structure beneath a mid-ocean ridge: the MELT experiment. Science 280(5367):1215–8

    Google Scholar 

  • Frederiksen AW, Bostock MG, Cassidy JF (2001) S-wave velocity structure of the Canadian upper mantle. Phys Earth Planet 124:175–191

    Article  Google Scholar 

  • Grand SP (2002) Mantle shear-wave tomography and the fate of subducted slabs. Philos T R Soc Lond 360:2475–2491

    Article  Google Scholar 

  • Gu YJ, Dziewónski AM, Su W, Ekström G (2001) Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities. J Geophys Res 106(B6):11169–11199

    Article  Google Scholar 

  • Gu YJ, Dziewónski AM, Ekström G (2003) Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities. Geophys J Int 154:559–583

    Article  Google Scholar 

  • Gudmundsson O, Sambridge M (1998) A regionalized upper mantle (RUM) seismic model. J Geophys Res 103:7121–7136

    Article  Google Scholar 

  • Hafkenscheid E, Wortel MJR, Spakman W (2006) Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. J Geophys Res 111(B8):1–26

    Google Scholar 

  • Houser C, Masters G, Shearer PM, Laske G (2008) Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys J Int 174:195–212

    Article  Google Scholar 

  • Jordan TH (1981) Global tectonic regionalization for seismological data analysis. B Seismo Soc Am 71(4):1131–1141

    Google Scholar 

  • Jordan TH, Paulson EM (2013) Convergence depths of tectonic regions from an ensemble of global tomographic models. J Geophys Res 118 (B8):4196−4225

    Google Scholar 

  • Karason H, van der Hilst RD (2001) Improving global tomography models of P-wavespeed I: incorporation of differential times for refracted and diffracted core phases (PKP, Pdiff). J Geophys Res 106:6569–6587

    Article  Google Scholar 

  • Kennett BLN (1987) Observational and theoretical constraints on crustal and upper-mantle heterogeneity. Phys Earth Planet 47:319–332

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int 122(1):108–124

    Article  Google Scholar 

  • Kovach RL (1979) Seismic surface waves and crustal and upper mantle structure. Rev Geophys 1(16):1–13

    Google Scholar 

  • Kustowski B, Dziewónski AM, Ekström G (2007) Nonlinear crustal corrections for normal-mode seismograms. B Seismo Soc Am 97(5):1756–1762

    Article  Google Scholar 

  • Kustowski B, Ekström G, Dziewónski AM (2008) Anisotropic shear-wave velocity structure of the Earth’s mantle: a global model. J Geophys Res 113(B6):1–23

    Google Scholar 

  • Lebedev S, van der Hilst RD (2008) Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophys J Int 173:505–518

    Article  Google Scholar 

  • Lebedev S, Nolet G, Meier T, van der Hilst RD (2005) Automated multimode inversion of surface and S waveforms. Geophys J Int 162:951–964

    Article  Google Scholar 

  • Lebedev S, Adam J, Meier T (2013) Mapping the Moho with seismic surface waves: a review, resolution analysis, and recommended inversion strategies. Tectonophysics (Moho special edition)

    Google Scholar 

  • Legendre CP, Meier T, Lebedev S, Friederich W, Viereck-Götte L (2012) A shear wave velocity model of the European upper mantle from automated inversion of seismic shear and surface waveforms. Geophys J Int 191:282–304

    Article  Google Scholar 

  • Lekić V, Romanowicz B (2011a) Inferring upper-mantle structure by full waveform tomography with the spectral element method. Geophys J Int 185(2):799–831

    Article  Google Scholar 

  • Lekić V, Romanowicz B (2011b) Tectonic regionalization without a priori information: a cluster analysis of upper mantle tomography. Earth Planet Sci Lett 308(1–2):151–160

    Google Scholar 

  • Lekić V, Panning M, Romanowicz B (2010) A simple method for improving crustal corrections in waveform tomography. Geophys J Int 182:265–278

    Google Scholar 

  • Li X-D, Romanowicz B (1996) Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. J Geophys Res 101(B10):22245–22272

    Google Scholar 

  • Li C, van der Hilst RD, Engdahl ER, Burdick S (2008) A new global model for P wave speed variations in Earth’s mantle. Geochem Geophys Geosys 9(5):Q05018

    Google Scholar 

  • Marone F, Romanowicz B (2007) Non-linear crustal corrections in high-resolution regional waveform seismic tomography. Geophys J Int 170(1):460–467

    Article  Google Scholar 

  • Masters G, Johnson S, Laske G, Bolton H (1996) A shear-velocity model of the mantle. Philos T R Soc Lond 354(1711):1385–1411

    Article  Google Scholar 

  • Masters G, Laske G, Bolton H, Dziewónski AM (2000) The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure, Earth’s deep interior: mineral physics and tomography from the atomic to the global scale, pp 63–87

    Google Scholar 

  • Mégnin C, Romanowicz B (2000) The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms. Geophys J Int 143(3):709–728

    Article  Google Scholar 

  • Montagner J-P, Tanimoto T (1991) Global upper mantle tomography of seismic velocities and anisotropies. J Geophys Res 96(B12):20337–20351

    Article  Google Scholar 

  • Montelli R, Nolet G, Masters G, Dahlen FA, Hung S-H (2004) Global P and PP traveltime tomography: rays versus waves. Geophys J Int 158(2):637–654

    Article  Google Scholar 

  • Mooney WD, Laske G, Masters G (1998) Crust 5.1: a global crustal model at 5° × 5°. J Geophys Res 103(B1):727—747

    Google Scholar 

  • Muller RD, Roest WR, Royer J-Y, Gahagan LM, Sclater JG (1997) Digital isochrons of the world’s ocean floor. J Geophys Res 102(B2):3211–3214

    Article  Google Scholar 

  • Nataf H, Ricard Y (1996) 3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling. Phys Earth Planet 9201(95)

    Google Scholar 

  • Nettles M, Dziewónski AM (2008) Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America. J Geophys Res 113(B2):1–27

    Google Scholar 

  • Nolet G (1990) Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs. J Geophys Res 95(B6):8499–8512

    Article  Google Scholar 

  • Nolet G (2008) A breviary of seismic tomography. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nolet G, Grand SP, Kennett BLN (1994) Seismic heterogeneity in the upper mantle. J Geophys Res 99(B12):23753–23766

    Article  Google Scholar 

  • Obrebski M, Allen RM, Pollitz F, Hung S-H (2011) Lithosphere-asthenosphere interaction beneath the western United States from the joint inversion of body-wave traveltimes and surface-wave phase velocities. Geophys J Int 185(2):1003–1021

    Article  Google Scholar 

  • Panning MP, Romanowicz B (2006) A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys J Int 167(1):361–379

    Article  Google Scholar 

  • Panning MP, Lekić V, Romanowicz Ba (2010) Importance of crustal corrections in the development of a new global model of radial anisotropy. J Geophys Res 115(B12):B12325

    Article  Google Scholar 

  • Ritsema J, van Heijst HJ, Woodhouse JH (1999) Complex shear wave velocity structure imaged beneath Africa and Iceland. Science 286:1925–1928

    Article  Google Scholar 

  • Ritsema J, van Heijst HJ, Woodhouse JH (2004) Global transition zone tomography. J Geophys Res 109(B2)

    Google Scholar 

  • Ritsema J, Deuss A, van Heijst HJ, Woodhouse JH (2011) S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys J Int 184(3):1223–1236

    Article  Google Scholar 

  • Schaeffer AJ, Lebedev S (2013) Global shear speed structure of the upper mantle and transition zone. Geophys J Int 194(1):417–449

    Article  Google Scholar 

  • Shapiro NM, Ritzwoller MH (2002) Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys J Int 151(1):88–105

    Article  Google Scholar 

  • Shen W, Ritzwoller MH, Schulte-Pelkum V (2013) A 3-D model of the crust and uppermost mantle beneath the central and western US by joint inversion of receiver functions and surface wave dispersion. J Geophys Res 118:1–15

    Google Scholar 

  • Siebert L, Simkin T (2002) Volcanoes of the World: an Illustrated catalog of holocene volcanoes and their eruptions

    Google Scholar 

  • Sigloch K (2011) Mantle provinces under North America from multifrequency P wave tomography. Geochem Geophys Geosys 12(2):1–27

    Google Scholar 

  • Simmons NA, Myers SC, Johannesson G, Matzel E (2012) LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. J Geophys Res 117(B10):1–28

    Google Scholar 

  • Steinberger B (2000) Plumes in a convecting mantle: models and observations for individual hotspots. J Geophys Res 105(B5):11127–11152

    Article  Google Scholar 

  • Su W-J, Woodward R, Dziewónski AM (1992) Deep origin of mid-ocean-ridge seismic velocity anomalies. Nature 360:149–152

    Article  Google Scholar 

  • Su W-J, Woodward R, Dziewónski AM (1994) Degree 12 model of shear velocity heterogeneity in the mantle. J Geophys Res 99(B4):6945–6980

    Article  Google Scholar 

  • Tian Y, Zhou Y, Sigloch K, Nolet G, Laske G (2011) Structure of North American mantle constrained by simultaneous inversion of multiple-frequency SH, SS, and Love waves. J Geophys Res 116(B2):1–18

    Google Scholar 

  • van der Lee S, Frederiksen AW (2005) Surface wave tomography applied to the North American upper mantle. In: Levander A, Nolet G (eds) Seismic earth: array analysis of broadband seismograms, vol 157, pp 67–80. AGU Geophysical Monograph Series, Washington, DC

    Google Scholar 

  • Wang Z, Dahlen FA (1995) Spherical-spline parameterization of three-dimensional Earth models. Geophys Res Lett 22(22):3099–3102

    Article  Google Scholar 

  • Wessel P, Smith W (1995) New version of the generic mapping tools released. EOS 76:329

    Article  Google Scholar 

  • Woodhouse JH, Dziewónski AM (1984) Mapping the upper mantle: three-dimensional modeling of earth structure by inversion of seismic waveforms. J Geophys Res 89(B7):5953–5986

    Article  Google Scholar 

  • Wu RS, Flatte SM (1990) Transmission fluctuations across an array and heterogeneities in the crust and upper mantle. Pure Appl Geophys 132:175–196

    Article  Google Scholar 

  • Zhang Y, Tanimoto T (1992) Ridges, hotspots and their interaction as observed in seismic velocity maps. Nature 355:45–49

    Article  Google Scholar 

  • Zhang Y, Tanimoto T (1993) High-resolution global upper mantle structure and plate tectonics. J Geophys Res 98(B6):9793–9823

    Article  Google Scholar 

  • Zhang X, Paulssen H, Lebedev S, Meier T (2009) 3D shear velocity structure beneath the Gulf of California from Rayleigh wave dispersion. Earth Planet Sci Lett 279(3–4):255–262

    Article  Google Scholar 

  • Zhou Y, Nolet G, Dahlen Fa, Laske G (2006) Global upper-mantle structure from finite-frequency surface-wave tomography. J Geophys Res 111(B4):1–24

    Google Scholar 

Download references

Acknowledgments

Insightful comments by Li Zhao and Frédéric Deschamps have helped us to improve the manuscript. We thank the creators of the tomographic models compared in this study for making them available. Waveform data used for the construction of the model SL2013sv were obtained from the facilities of IRIS, ORFEUS, GFZ, and CNSN. We are grateful to the operators of the many networks used in this study. All figures were generated using Generic Mapping Tools (GMT; Wessel and Smith 1995). This work was supported by Science Foundation Ireland (Grant 09/RFP/GEO2550), with additional support by Science Foundation Ireland and the Marie-Curie Action COFUND (Grant Number 11/SIRG/E2174). Our tomographic model, SL2013sv, can be downloaded from http://www.dias.ie/~aschaeff/SL2013sv.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Schaeffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schaeffer, A.J., Lebedev, S. (2015). Global Heterogeneity of the Lithosphere and Underlying Mantle: A Seismological Appraisal Based on Multimode Surface-Wave Dispersion Analysis, Shear-Velocity Tomography, and Tectonic Regionalization. In: Khan, A., Deschamps, F. (eds) The Earth's Heterogeneous Mantle. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-15627-9_1

Download citation

Publish with us

Policies and ethics