Skip to main content

Part of the book series: Headache ((HEAD))

Abstract

Clinical human and experimental animal studies have facilitated our understanding of the essential structures in the initiation, transmission, modulation, and maintenance of headache. Pain-sensitive cranial structures, such as the dura mater encephali and large intracerebral blood vessels, and the cranial and cervical muscles and ligaments, which are innervated by primary afferent neurons originating from the trigeminal ganglia, take pivotal role in headache generation. Nociceptive impulses originated in the peripheral structures are then transmitted to central structures via second-order trigeminal neurons in the trigeminocervical complex in the brainstem. In addition to bottom organization of headache, top-down modulation of nociceptive stimuli from cranial structures through descending pathways is also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P (2009) Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol 8:679–690. doi:10.1016/S1474-4422(09)70090-0

    PubMed  Google Scholar 

  2. Pietrobon D, Striessnig J (2003) Neurobiology of migraine. Nat Rev Neurosci 4:386–398. doi:10.1038/nrn1102

    CAS  PubMed  Google Scholar 

  3. Ray BS, Wolff HG (1940) Experimental studies on headache: pain sensitive structures of the head and their significance in headache. Arch Surg 1:813–856

    Google Scholar 

  4. Feindel W, Penfield W, Mcnaughton F (1960) The tentorial nerves and localization of intracranial pain in man. Neurology 10:555–563

    CAS  PubMed  Google Scholar 

  5. Penfield W, McNaughton M (1940) Dural headache and innervation of the dura mater. Arch Neurol Psychiatry 44:43–75

    Google Scholar 

  6. Bove GM, Moskowitz MA (1997) Primary afferent neurons innervating guinea pig dura. J Neurophysiol 77:299–308

    CAS  PubMed  Google Scholar 

  7. Strassman AM, Raymond SA, Burstein R (1996) Sensitization of meningeal sensory neurons and the origin of headaches. Nature 384:560–564. doi:10.1038/384560a0

    CAS  PubMed  Google Scholar 

  8. Strassman A, Mason P, Moskowitz M, Maciewicz R (1986) Response of brainstem trigeminal neurons to electrical stimulation of the dura. Brain Res 379:242–250

    CAS  PubMed  Google Scholar 

  9. Schepelmann K, Ebersberger A, Pawlak M et al (1999) Response properties of trigeminal brain stem neurons with input from dura mater encephali in the rat. Neuroscience 90:543–554

    CAS  PubMed  Google Scholar 

  10. Davis KD, Dostrovsky JO (1988) Properties of feline thalamic neurons activated by stimulation of the middle meningeal artery and sagittal sinus. Brain Res 454:89–100

    CAS  PubMed  Google Scholar 

  11. Burstein R, Jakubowski M, Garcia-Nicas E et al (2010) Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol 68:81–91. doi:10.1002/ana.21994

    PubMed Central  PubMed  Google Scholar 

  12. Mayberg MR, Zervas NT, Moskowitz MA (1984) Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry. J Comp Neurol 223:46–56. doi:10.1002/cne.902230105

    CAS  PubMed  Google Scholar 

  13. Steiger HJ, Meakin CJ (1984) The meningeal representation in the trigeminal ganglion–an experimental study in the cat. Headache 24:305–309

    CAS  PubMed  Google Scholar 

  14. Schueler M, Neuhuber WL, De Col R, Messlinger K (2014) Innervation of rat and human dura mater and pericranial tissues in the parieto-temporal region by meningeal afferents. Headache 54:996–1009. doi:10.1111/head.12371

    PubMed  Google Scholar 

  15. McNaughton M (1938) The innervation of the intracranial blood vessels and dural sinuses. Assoc Res Nerv Ment Dis 18:178–200

    Google Scholar 

  16. Liu Y, Broman J, Edvinsson L (2004) Central projections of sensory innervation of the rat superior sagittal sinus. Neuroscience 129:431–437. doi:10.1016/j.neuroscience.2004.07.045

    CAS  PubMed  Google Scholar 

  17. Arnold F (1831) Der Kopfteil des vegetativen Nervensystems beim Menschen. K. Groos, Heidelberg

    Google Scholar 

  18. Luschka H (1856) Die Nerven der harten Hirnhaut. H. Laupp, Tübingen

    Google Scholar 

  19. O’Connor TP, van der Kooy D (1986) Pattern of intracranial and extracranial projections of trigeminal ganglion cells. J Neurosci Off J Soc Neurosci 6:2200–2207

    Google Scholar 

  20. Strassman AM, Weissner W, Williams M et al (2004) Axon diameters and intradural trajectories of the dural innervation in the rat. J Comp Neurol 473:364–376. doi:10.1002/cne.20106

    PubMed  Google Scholar 

  21. Edvinsson L, Uddman R (1981) Adrenergic, cholinergic and peptidergic nerve fibres in dura mater–involvement in headache? Cephalalgia Int J Headache 1:175–179

    CAS  Google Scholar 

  22. Keller JT, Marfurt CF, Dimlich RV, Tierney BE (1989) Sympathetic innervation of the supratentorial dura mater of the rat. J Comp Neurol 290:310–321. doi:10.1002/cne.902900210

    CAS  PubMed  Google Scholar 

  23. Amenta F, Sancesario G, Ferrante F, Cavallotti C (1980) Acetylcholinesterase-containing nerve fibers in the dura mater of guinea pig, mouse, and rat. J Neural Transm 47:237–242

    CAS  PubMed  Google Scholar 

  24. Edvinsson L, Hara H, Uddman R (1989) Retrograde tracing of nerve fibers to the rat middle cerebral artery with true blue: colocalization with different peptides. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 9:212–218. doi:10.1038/jcbfm.1989.31

    CAS  Google Scholar 

  25. Hardebo JE, Arbab M, Suzuki N, Svendgaard NA (1991) Pathways of parasympathetic and sensory cerebrovascular nerves in monkeys. Stroke J Cereb Circ 22:331–342

    CAS  Google Scholar 

  26. Suzuki N, Hardebo JE (1991) The pathway of parasympathetic nerve fibers to cerebral vessels from the otic ganglion in the rat. J Auton Nerv Syst 36:39–46

    CAS  PubMed  Google Scholar 

  27. Von Düring M, Bauersachs M, Böhmer B et al (1990) Neuropeptide Y- and substance P-like immunoreactive nerve fibers in the rat dura mater encephali. Anat Embryol (Berl) 182:363–373

    Google Scholar 

  28. Keller JT, Marfurt CF (1991) Peptidergic and serotoninergic innervation of the rat dura mater. J Comp Neurol 309:515–534. doi:10.1002/cne.903090408

    CAS  PubMed  Google Scholar 

  29. Messlinger K, Hanesch U, Baumgärtel M et al (1993) Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity. Anat Embryol (Berl) 188:219–237

    CAS  Google Scholar 

  30. Edvinsson L, Brodin E, Jansen I, Uddman R (1988) Neurokinin A in cerebral vessels: characterization, localization and effects in vitro. Regul Pept 20:181–197

    CAS  PubMed  Google Scholar 

  31. You J, Gulbenkian S, Jansen Olesen I et al (1995) Peptidergic innervation of guinea-pig brain vessels: comparison with immunohistochemistry and in vitro pharmacology in rostrally and caudally located arteries. J Auton Nerv Syst 55:179–188

    CAS  PubMed  Google Scholar 

  32. Huang D, Li S, Dhaka A et al (2012) Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura. Mol Pain 8:66. doi:10.1186/1744-8069-8-66

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Staikopoulos V, Sessle BJ, Furness JB, Jennings EA (2007) Localization of P2X2 and P2X3 receptors in rat trigeminal ganglion neurons. Neuroscience 144:208–216. doi:10.1016/j.neuroscience.2006.09.035

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Andres KH, von Düring M, Muszynski K, Schmidt RF (1987) Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol (Berl) 175:289–301

    CAS  Google Scholar 

  35. Fricke B, Andres KH, Von Düring M (2001) Nerve fibers innervating the cranial and spinal meninges: morphology of nerve fiber terminals and their structural integration. Microsc Res Tech 53:96–105. doi:10.1002/jemt.1074

    CAS  PubMed  Google Scholar 

  36. Messlinger K (1996) Functional morphology of nociceptive and other fine sensory endings (free nerve endings) in different tissues. In: The polymodal receptor: a gateway to pathological pain. Elsevier, Amsterdam, pp 273–298

    Google Scholar 

  37. Von Düring M, Andres KH (1991) Sensory nerve fiber terminals in the arachnoid granulations of non-human primates. Neurosci Lett 127:121–124

    Google Scholar 

  38. Kosaras B, Jakubowski M, Kainz V, Burstein R (2009) Sensory innervation of the calvarial bones of the mouse. J Comp Neurol 515:331–348. doi:10.1002/cne.22049

    PubMed Central  PubMed  Google Scholar 

  39. Calhoun AH, Ford S, Millen C et al (2010) The prevalence of neck pain in migraine. Headache 50:1273–1277. doi:10.1111/j.1526-4610.2009.01608.x

    PubMed  Google Scholar 

  40. Svensson P, Ashina M (2006) Human studies of experimental pain from muscle. In: The headaches. Lippincott Williams & Wilkins, Philadelphia, pp 627–635

    Google Scholar 

  41. Malick A, Burstein R (2000) Peripheral and central sensitization during migraine. Funct Neurol 15(Suppl 3):28–35

    PubMed  Google Scholar 

  42. Schueler M, Messlinger K, Dux M et al (2013) Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache. Pain 154:1622–1631. doi:10.1016/j.pain.2013.04.040

    PubMed  Google Scholar 

  43. Moskowitz MA, Buzzi MG (1991) Neuroeffector functions of sensory fibres: implications for headache mechanisms and drug actions. J Neurol 238(Suppl 1):S18–S22

    PubMed  Google Scholar 

  44. Moskowitz MA (1993) Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology 43:S16–S20

    CAS  PubMed  Google Scholar 

  45. Goadsby PJ (2007) Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol Med 13:39–44. doi:10.1016/j.molmed.2006.11.005

    CAS  PubMed  Google Scholar 

  46. Sicuteri F, Fusco BM, Marabini S et al (1989) Beneficial effect of capsaicin application to the nasal mucosa in cluster headache. Clin J Pain 5:49–53

    CAS  PubMed  Google Scholar 

  47. Marks DR, Rapoport A, Padla D et al (1993) A double-blind placebo-controlled trial of intranasal capsaicin for cluster headache. Cephalalgia Int J Headache 13:114–116

    CAS  Google Scholar 

  48. Hou M, Uddman R, Tajti J et al (2002) Capsaicin receptor immunoreactivity in the human trigeminal ganglion. Neurosci Lett 330:223–226

    CAS  PubMed  Google Scholar 

  49. Belvisi MG, Dubuis E, Birrell MA (2011) Transient receptor potential A1 channels: insights into cough and airway inflammatory disease. Chest 140:1040–1047. doi:10.1378/chest.10-3327

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Jordt S-E, Bautista DM, Chuang H-H et al (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265. doi:10.1038/nature02282

    CAS  PubMed  Google Scholar 

  51. Nassini R, Materazzi S, Vriens J et al (2012) The “headache tree” via umbellulone and TRPA1 activates the trigeminovascular system. Brain J Neurol 135:376–390. doi:10.1093/brain/awr272

    Google Scholar 

  52. Eberhardt M, Dux M, Namer B et al (2014) H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat Commun 5:4381. doi:10.1038/ncomms5381

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Salas MM, Hargreaves KM, Akopian AN (2009) TRPA1-mediated responses in trigeminal sensory neurons: interaction between TRPA1 and TRPV1. Eur J Neurosci 29:1568–1578. doi:10.1111/j.1460-9568.2009.06702.x

    PubMed Central  PubMed  Google Scholar 

  54. Yan J, Edelmayer RM, Wei X et al (2011) Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache. Pain 152:106–113. doi:10.1016/j.pain.2010.09.036

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Wemmie JA, Price MP, Welsh MJ (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29:578–586. doi:10.1016/j.tins.2006.06.014

    CAS  PubMed  Google Scholar 

  56. Bolay H, Reuter U, Dunn AK et al (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8:136–142. doi:10.1038/nm0202-136

    CAS  PubMed  Google Scholar 

  57. Lambert GA, Michalicek J (1994) Cortical spreading depression reduces dural blood flow–a possible mechanism for migraine pain? Cephalalgia Int J Headache 14:430–436; discussion 393–394

    CAS  Google Scholar 

  58. Rothwell NJ, Hopkins SJ (1995) Cytokines and the nervous system II: actions and mechanisms of action. Trends Neurosci 18:130–136

    CAS  PubMed  Google Scholar 

  59. Vitkovic L, Bockaert J, Jacque C (2000) “Inflammatory” cytokines: neuromodulators in normal brain? J Neurochem 74:457–471

    CAS  PubMed  Google Scholar 

  60. Magni G, Ceruti S (2013) P2Y purinergic receptors: new targets for analgesic and antimigraine drugs. Biochem Pharmacol 85:466–477. doi:10.1016/j.bcp.2012.10.027

    CAS  PubMed  Google Scholar 

  61. Amrutkar DV, Ploug KB, Hay-Schmidt A et al (2012) mRNA expression of 5-hydroxytryptamine 1B, 1D, and 1F receptors and their role in controlling the release of calcitonin gene-related peptide in the rat trigeminovascular system. Pain 153:830–838. doi:10.1016/j.pain.2012.01.005

    CAS  PubMed  Google Scholar 

  62. Buzzi MG, Moskowitz MA (1991) Evidence for 5-HT1B/1D receptors mediating the antimigraine effect of sumatriptan and dihydroergotamine. Cephalalgia Int J Headache 11:165–168

    CAS  Google Scholar 

  63. Wang X, Fang Y, Liang J et al (2014) 5-HT7 receptors are involved in neurogenic dural vasodilatation in an experimental model of migraine. J Mol Neurosci MN. doi:10.1007/s12031-014-0268-9

    Google Scholar 

  64. Tao J, Liu P, Xiao Z et al (2012) Effects of familial hemiplegic migraine type 1 mutation T666M on voltage-gated calcium channel activities in trigeminal ganglion neurons. J Neurophysiol 107:1666–1680. doi:10.1152/jn.00551.2011

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Cao Y-Q, Tsien RW (2005) Effects of familial hemiplegic migraine type 1 mutations on neuronal P/Q-type Ca2+ channel activity and inhibitory synaptic transmission. Proc Natl Acad Sci U S A 102:2590–2595. doi:10.1073/pnas.0409896102

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Westenbroek RE, Hoskins L, Catterall WA (1998) Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J Neurosci Off J Soc Neurosci 18:6319–6330

    CAS  Google Scholar 

  67. Ripsch MS, Ballard CJ, Khanna M et al (2012) A peptide uncoupling CRMP-2 from the presynaptic Ca(2+) channel complex demonstrates efficacy in animal models of migraine and aids therapy-induced neuropathy. Transl Neurosci 3:1–8. doi:10.2478/s13380-012-0002-4

    PubMed Central  PubMed  Google Scholar 

  68. Lampert A, O’Reilly AO, Reeh P, Leffler A (2010) Sodium channelopathies and pain. Pflugers Arch Eur J Physiol 460:249–263. doi:10.1007/s00424-009-0779-3

    CAS  Google Scholar 

  69. Liang J, Liu X, Pan M et al (2014) Blockade of Nav1.8 currents in nociceptive trigeminal neurons contributes to anti-trigeminovascular nociceptive effect of amitriptyline. Neuromolecular Med 16:308–321. doi:10.1007/s12017-013-8282-6

    CAS  PubMed  Google Scholar 

  70. Devulder J (2010) Flupirtine in pain management: pharmacological properties and clinical use. CNS Drugs 24:867–881. doi:10.2165/11536230-000000000-00000

    CAS  PubMed  Google Scholar 

  71. Mastronardi P, D’Onofrio M, Scanni E et al (1988) Analgesic activity of flupirtine maleate: a controlled double-blind study with diclofenac sodium in orthopaedics. J Int Med Res 16:338–348

    CAS  PubMed  Google Scholar 

  72. Peretz A, Degani N, Nachman R et al (2005) Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties. Mol Pharmacol 67:1053–1066. doi:10.1124/mol.104.007112

    CAS  PubMed  Google Scholar 

  73. Ooi L, Gigout S, Pettinger L, Gamper N (2013) Triple cysteine module within M-type K+ channels mediates reciprocal channel modulation by nitric oxide and reactive oxygen species. J Neurosci Off J Soc Neurosci 33:6041–6046. doi:10.1523/JNEUROSCI.4275-12.2013

    CAS  Google Scholar 

  74. Ottosson A, Edvinsson L (1997) Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia Int J Headache 17:166–174

    CAS  Google Scholar 

  75. Krabbe AA, Olesen J (1980) Headache provocation by continuous intravenous infusion of histamine. Clinical results and receptor mechanisms. Pain 8:253–259

    CAS  PubMed  Google Scholar 

  76. Lassen LH, Thomsen LL, Olesen J (1995) Histamine induces migraine via the H1-receptor. Support for the NO hypothesis of migraine. Neuroreport 6:1475–1479

    CAS  PubMed  Google Scholar 

  77. Varatharaj A, Mack J, Davidson JR et al (2012) Mast cells in the human dura: effects of age and dural bleeding. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 28:541–545. doi:10.1007/s00381-012-1699-7

    CAS  Google Scholar 

  78. Dimlich RV, Keller JT, Strauss TA, Fritts MJ (1991) Linear arrays of homogeneous mast cells in the dura mater of the rat. J Neurocytol 20:485–503

    CAS  PubMed  Google Scholar 

  79. Dux M, Sántha P, Jancsó G (2012) The role of chemosensitive afferent nerves and TRP ion channels in the pathomechanism of headaches. Pflugers Arch Eur J Physiol 464:239–248. doi:10.1007/s00424-012-1142-7

    CAS  Google Scholar 

  80. Dux M, Schwenger N, Messlinger K (2002) Possible role of histamine (H1- and H2-) receptors in the regulation of meningeal blood flow. Br J Pharmacol 137:874–880. doi:10.1038/sj.bjp.0704946

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77:1033–1079

    CAS  PubMed  Google Scholar 

  82. Dux M, Rosta J, Sántha P, Jancsó G (2009) Involvement of capsaicin-sensitive afferent nerves in the proteinase-activated receptor 2-mediated vasodilatation in the rat dura mater. Neuroscience 161:887–894. doi:10.1016/j.neuroscience.2009.04.010

    CAS  PubMed  Google Scholar 

  83. Reuter U, Bolay H, Jansen-Olesen I et al (2001) Delayed inflammation in rat meninges: implications for migraine pathophysiology. Brain J Neurol 124:2490–2502

    CAS  Google Scholar 

  84. Reuter U, Chiarugi A, Bolay H, Moskowitz MA (2002) Nuclear factor-kappaB as a molecular target for migraine therapy. Ann Neurol 51:507–516

    CAS  PubMed  Google Scholar 

  85. Olszewski J (1950) On the anatomical and functional organization of the spinal trigeminal nucleus. J Comp Neurol 92:401–413

    CAS  PubMed  Google Scholar 

  86. Gobel S, Falls WM, Hockfield S (1977) The division of the dorsal and ventral horns of the mammalian caudal medulla into eight layers using anatomical criteria. In: Pain in the trigeminal region. Elsevier/North-Holland Biomedical Press, Amsterdam/New York, pp 443–453

    Google Scholar 

  87. Rexed B (1952) The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96:414–495

    CAS  PubMed  Google Scholar 

  88. Nord SG, Kyler HJ (1968) A single unit analysis of trigeminal projections to bulbar reticular nuclei of the rat. J Comp Neurol 134:485–494. doi:10.1002/cne.901340407

    CAS  PubMed  Google Scholar 

  89. Phelan KD, Falls WM (1989) The interstitial system of the spinal trigeminal tract in the rat: anatomical evidence for morphological and functional heterogeneity. Somatosens Mot Res 6:367–399

    CAS  PubMed  Google Scholar 

  90. Hayashi H, Tabata T (1989) Physiological properties of sensory trigeminal neurons projecting to mesencephalic parabrachial area in the cat. J Neurophysiol 61:1153–1160

    CAS  PubMed  Google Scholar 

  91. Hayashi H, Sumino R, Sessle BJ (1984) Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray. J Neurophysiol 51:890–905

    CAS  PubMed  Google Scholar 

  92. Strassman AM, Vos BP (1993) Somatotopic and laminar organization of fos-like immunoreactivity in the medullary and upper cervical dorsal horn induced by noxious facial stimulation in the rat. J Comp Neurol 331:495–516. doi:10.1002/cne.903310406

    CAS  PubMed  Google Scholar 

  93. Yokota T, Nishikawa N (1980) Reappraisal of somatotopic tactile representation within trigeminal subnucleus caudalis. J Neurophysiol 43:700–712

    CAS  PubMed  Google Scholar 

  94. Torvik A (1956) Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures; an experimental study in the rat. J Comp Neurol 106:51–141

    CAS  PubMed  Google Scholar 

  95. Kruger L, Siminoff R, Witkovsky P (1961) Single neuron analysis of dorsal column nuclei and spinal nucleus of trigeminal in cat. J Neurophysiol 24:333–349

    CAS  PubMed  Google Scholar 

  96. Jacquin MF, Barcia M, Rhoades RW (1989) Structure-function relationships in rat brainstem subnucleus interpolaris: IV. Projection neurons. J Comp Neurol 282:45–62. doi:10.1002/cne.902820105

    CAS  PubMed  Google Scholar 

  97. Liu Y, Zhang M, Broman J, Edvinsson L (2003) Central projections of sensory innervation of the rat superficial temporal artery. Brain Res 966:126–133

    CAS  PubMed  Google Scholar 

  98. Lisney SJ (1983) Some current topics of interest in the physiology of trigeminal pain: a review. J R Soc Med 76:292–296

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Sjoqvist O (1938) Studies on pain conduction in the trigeminal nerve. A contribution to the surgical treatment of facial pain. Acta Psychiatry Scand 17(Suppl):1–139

    Google Scholar 

  100. Young RF (1982) Effect of trigeminal tractotomy on dental sensation in humans. J Neurosurg 56:812–818. doi:10.3171/jns.1982.56.6.0812

    CAS  PubMed  Google Scholar 

  101. Broton JG, Rosenfeld JP (1986) Cutting rostral trigeminal nuclear complex projections preferentially affects perioral nociception in the rat. Brain Res 397:1–8

    CAS  PubMed  Google Scholar 

  102. Malick A, Strassman RM, Burstein R (2000) Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol 84:2078–2112

    CAS  PubMed  Google Scholar 

  103. Hayashi H (1985) Morphology of terminations of small and large myelinated trigeminal primary afferent fibers in the cat. J Comp Neurol 240:71–89. doi:10.1002/cne.902400106

    CAS  PubMed  Google Scholar 

  104. Panneton WM, Burton H (1981) Corneal and periocular representation within the trigeminal sensory complex in the cat studied with transganglionic transport of horseradish peroxidase. J Comp Neurol 199:327–344. doi:10.1002/cne.901990303

    CAS  PubMed  Google Scholar 

  105. Pearson JC, Jennes L (1988) Localization of serotonin- and substance P-like immunofluorescence in the caudal spinal trigeminal nucleus of the rat. Neurosci Lett 88:151–156

    CAS  PubMed  Google Scholar 

  106. Boissonade FM, Sharkey KA, Lucier GE (1993) Trigeminal nuclear complex of the ferret: anatomical and immunohistochemical studies. J Comp Neurol 329:291–312. doi:10.1002/cne.903290302

    CAS  PubMed  Google Scholar 

  107. Bae YC, Oh JM, Hwang SJ et al (2004) Expression of vanilloid receptor TRPV1 in the rat trigeminal sensory nuclei. J Comp Neurol 478:62–71. doi:10.1002/cne.20272

    CAS  PubMed  Google Scholar 

  108. Henry MA, Johnson LR, Nousek-Goebl N, Westrum LE (1996) Light microscopic localization of calcitonin gene-related peptide in the normal feline trigeminal system and following retrogasserian rhizotomy. J Comp Neurol 365:526–540. doi:10.1002/(SICI)1096-9861(19960219)365:4<526::AID-CNE2>3.0.CO;2-6

    CAS  PubMed  Google Scholar 

  109. Tashiro T, Takahashi O, Satoda T et al (1991) Distribution of axons showing calcitonin gene-related peptide- and/or substance P-like immunoreactivity in the sensory trigeminal nuclei of the cat. Neurosci Res 11:119–133

    CAS  PubMed  Google Scholar 

  110. Henry MA, Nousek-Goebl NA, Westrum LE (1993) Light and electron microscopic localization of calcitonin gene-related peptide immunoreactivity in lamina II of the feline trigeminal pars caudalis/medullary dorsal horn: a qualitative study. Synap N Y N 13:99–107. doi:10.1002/syn.890130202

    CAS  Google Scholar 

  111. Lennerz JK, Rühle V, Ceppa EP et al (2008) Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J Comp Neurol 507:1277–1299. doi:10.1002/cne.21607

    CAS  PubMed  Google Scholar 

  112. Eftekhari S, Warfvinge K, Blixt FW, Edvinsson L (2013) Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J Pain Off J Am Pain Soc 14:1289–1303. doi:10.1016/j.jpain.2013.03.010

    CAS  Google Scholar 

  113. Guy N, Chalus M, Dallel R, Voisin DL (2005) Both oral and caudal parts of the spinal trigeminal nucleus project to the somatosensory thalamus in the rat. Eur J Neurosci 21:741–754. doi:10.1111/j.1460-9568.2005.03918.x

    PubMed  Google Scholar 

  114. Mantle-St John LA, Tracey DJ (1987) Somatosensory nuclei in the brainstem of the rat: independent projections to the thalamus and cerebellum. J Comp Neurol 255:259–271. doi:10.1002/cne.902550209

    CAS  PubMed  Google Scholar 

  115. Ring G, Ganchrow D (1983) Projections of nucleus caudalis and spinal cord to brainstem and diencephalon in the hedgehog (Erinaceus europaeus and Paraechinus aethiopicus): a degeneration study. J Comp Neurol 216:132–151. doi:10.1002/cne.902160203

    CAS  PubMed  Google Scholar 

  116. Craig AD (2004) Distribution of trigeminothalamic and spinothalamic lamina I terminations in the macaque monkey. J Comp Neurol 477:119–148. doi:10.1002/cne.20240

    CAS  PubMed  Google Scholar 

  117. Bolay H, Tepe N, Filiz A et al (2013) The thalamic reticular nucleus is activated by cortical spreading depression in freely moving rats: prevention by acute valproate. Cephalalgia 33:5–6

    Google Scholar 

  118. Tepe N, Filiz A, Akcali D et al (2015) The thalamic reticular nucleus is activated by cortical spreading depression in freely moving rats: prevention by acute valproate administration. Eur J Neurosci. 41(1):120–8.

    Google Scholar 

  119. Zikopoulos B, Barbas H (2012) Pathways for emotions and attention converge on the thalamic reticular nucleus in primates. J Neurosci Off J Soc Neurosci 32:5338–5350. doi:10.1523/JNEUROSCI.4793-11.2012

    CAS  Google Scholar 

  120. Bernard JF, Peschanski M, Besson JM (1989) A possible spino (trigemino)-ponto-amygdaloid pathway for pain. Neurosci Lett 100:83–88

    CAS  PubMed  Google Scholar 

  121. Ge S-N, Li Z-H, Tang J et al (2014) Differential expression of VGLUT1 or VGLUT2 in the trigeminothalamic or trigeminocerebellar projection neurons in the rat. Brain Struct Funct 219:211–229. doi:10.1007/s00429-012-0495-1

    CAS  PubMed  Google Scholar 

  122. Panneton WM, Gan Q (2014) Direct reticular projections of trigeminal sensory fibers immunoreactive to CGRP: potential monosynaptic somatoautonomic projections. Front Neurosci 8:136. doi:10.3389/fnins.2014.00136

    PubMed Central  PubMed  Google Scholar 

  123. Barnett EM, Evans GD, Sun N et al (1995) Anterograde tracing of trigeminal afferent pathways from the murine tooth pulp to cortex using herpes simplex virus type 1. J Neurosci Off J Soc Neurosci 15:2972–2984

    CAS  Google Scholar 

  124. Feil K, Herbert H (1995) Topographic organization of spinal and trigeminal somatosensory pathways to the rat parabrachial and Kölliker-Fuse nuclei. J Comp Neurol 353:506–528. doi:10.1002/cne.903530404

    CAS  PubMed  Google Scholar 

  125. Mitchell JL, Silverman MB, Aicher SA (2004) Rat trigeminal lamina I neurons that project to thalamic or parabrachial nuclei contain the mu-opioid receptor. Neuroscience 128:571–582. doi:10.1016/j.neuroscience.2004.07.026

    CAS  PubMed  Google Scholar 

  126. Aicher SA, Hermes SM, Hegarty DM (2012) Corneal afferents differentially target thalamic- and parabrachial-projecting neurons in spinal trigeminal nucleus caudalis. Neuroscience. doi:10.1016/j.neuroscience.2012.11.033

    Google Scholar 

  127. Saper CB (1995) The spinoparabrachial pathway: shedding new light on an old path. J Comp Neurol 353:477–479. doi:10.1002/cne.903530402

    CAS  PubMed  Google Scholar 

  128. Sessle BJ (1999) Neural mechanisms and pathways in craniofacial pain. Can J Neurol Sci J Can Sci Neurol 26(Suppl 3):S7–S11

    Google Scholar 

  129. Gauriau C, Bernard J-F (2002) Pain pathways and parabrachial circuits in the rat. Exp Physiol 87:251–258

    PubMed  Google Scholar 

  130. Yasui Y, Takada M, Mitani A et al (1985) Direct cortical projections to the parabrachial nucleus in the cat. J Comp Neurol 234:77–86

    CAS  PubMed  Google Scholar 

  131. Tokita K, Inoue T, Boughter JD (2009) Afferent connections of the parabrachial nucleus in C57BL/6J mice. Neuroscience 161:475–488. doi:10.1016/j.neuroscience.2009.03.046

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Moskowitz MA, Nozaki K, Kraig RP (1993) Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci Off J Soc Neurosci 13:1167–1177

    CAS  Google Scholar 

  133. Jasmin L, Burkey AR, Card JP, Basbaum AI (1997) Transneuronal labeling of a nociceptive pathway, the spino-(trigemino-)parabrachio-amygdaloid, in the rat. J Neurosci Off J Soc Neurosci 17:3751–3765

    CAS  Google Scholar 

  134. Lazarov NE, Usunoff KG, Schmitt O et al (2011) Amygdalotrigeminal projection in the rat: an anterograde tracing study. Ann Anat Anat Anz Off Organ Anat Ges 193:118–126. doi:10.1016/j.aanat.2010.12.004

    Google Scholar 

  135. Akcali D, Sayin A, Sara Y, Bolay H (2010) Does single cortical spreading depression elicit pain behaviour in freely moving rats? Cephalalgia Int J Headache 30:1195–1206. doi:10.1177/0333102409360828

    Google Scholar 

  136. Abdallah K, Artola A, Monconduit L et al (2013) Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats. PLoS One 8:e73022. doi:10.1371/journal.pone.0073022

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Helmstetter FJ, Tershner SA, Poore LH, Bellgowan PS (1998) Antinociception following opioid stimulation of the basolateral amygdala is expressed through the periaqueductal gray and rostral ventromedial medulla. Brain Res 779:104–118

    CAS  PubMed  Google Scholar 

  138. Aimone LD, Gebhart GF (1988) Serotonin and/or an excitatory amino acid in the medial medulla mediates stimulation-produced antinociception from the lateral hypothalamus in the rat. Brain Res 450:170–180

    CAS  PubMed  Google Scholar 

  139. Messlinger K, Dostrovsky JO, Strassman A (2006) Anatomy and physiology of head pain. In: The headaches, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 95–109

    Google Scholar 

  140. An X, Bandler R, Ongür D, Price JL (1998) Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J Comp Neurol 401:455–479

    CAS  PubMed  Google Scholar 

  141. Mantyh PW (1982) Forebrain projections to the periaqueductal gray in the monkey, with observations in the cat and rat. J Comp Neurol 206:146–158. doi:10.1002/cne.902060205

    CAS  PubMed  Google Scholar 

  142. Gebhart GF (2004) Descending modulation of pain. Neurosci Biobehav Rev 27:729–737. doi:10.1016/j.neubiorev.2003.11.008

    CAS  PubMed  Google Scholar 

  143. Morgan MM, Heinricher MM, Fields HL (1992) Circuitry linking opioid-sensitive nociceptive modulatory systems in periaqueductal gray and spinal cord with rostral ventromedial medulla. Neuroscience 47:863–871

    CAS  PubMed  Google Scholar 

  144. Pertovaara A, Almeide A (2006) Endogenous pain modulation, chapter 13, descending inhibitory systems. Handb Clin Neurol 81(3rd series vol. 3), 179–192

    Google Scholar 

  145. Lakos S, Basbaum AI (1988) An ultrastructural study of the projections from the midbrain periaqueductal gray to spinally projecting, serotonin-immunoreactive neurons of the medullary nucleus raphe magnus in the rat. Brain Res 443:383–388

    CAS  PubMed  Google Scholar 

  146. Kwiat GC, Basbaum AI (1992) The origin of brainstem noradrenergic and serotonergic projections to the spinal cord dorsal horn in the rat. Somatosens Mot Res 9:157–173

    CAS  PubMed  Google Scholar 

  147. Yaksh TL (1985) Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharmacol Biochem Behav 22:845–858

    CAS  PubMed  Google Scholar 

  148. Iliakis B, Anderson NL, Irish PS et al (1996) Electron microscopy of immunoreactivity patterns for glutamate and gamma-aminobutyric acid in synaptic glomeruli of the feline spinal trigeminal nucleus (Subnucleus Caudalis). J Comp Neurol 366:465–477. doi:10.1002/(SICI)1096-9861(19960311)366:3<465::AID-CNE7>3.0.CO;2-2

    CAS  PubMed  Google Scholar 

  149. Yoshida A, Chen K, Moritani M et al (1997) Organization of the descending projections from the parabrachial nucleus to the trigeminal sensory nuclear complex and spinal dorsal horn in the rat. J Comp Neurol 383:94–111

    CAS  PubMed  Google Scholar 

  150. Delépine L, Aubineau P (1997) Plasma protein extravasation induced in the rat dura mater by stimulation of the parasympathetic sphenopalatine ganglion. Exp Neurol 147:389–400. doi:10.1006/exnr.1997.6614

    PubMed  Google Scholar 

  151. Johnson K, Bolay H (2006) Neurogenic inflammatory mechanisms in migraine. In: The headaches, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 309–319

    Google Scholar 

  152. Millan MJ, Gramsch C, Przewłocki R et al (1980) Lesions of the hypothalamic arcuate nucleus produce a temporary hyperalgesia and attenuate stress-evoked analgesia. Life Sci 27:1513–1523

    CAS  PubMed  Google Scholar 

  153. Butler RK, Finn DP (2009) Stress-induced analgesia. Prog Neurobiol 88:184–202. doi:10.1016/j.pneurobio.2009.04.003

    CAS  PubMed  Google Scholar 

  154. Frost JJ, Mayberg HS, Sadzot B et al (1990) Comparison of [11C]diprenorphine and [11C]carfentanil binding to opiate receptors in humans by positron emission tomography. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 10:484–492. doi:10.1038/jcbfm.1990.90

    CAS  Google Scholar 

  155. Valet M, Sprenger T, Boecker H et al (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain–an fMRI analysis. Pain 109:399–408. doi:10.1016/j.pain.2004.02.033

    PubMed  Google Scholar 

  156. Treede RD, Kenshalo DR, Gracely RH, Jones AK (1999) The cortical representation of pain. Pain 79:105–111

    CAS  PubMed  Google Scholar 

  157. Gauriau C, Bernard J-F (2004) A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J Comp Neurol 468:24–56. doi:10.1002/cne.10873

    PubMed  Google Scholar 

  158. Gauriau C, Bernard J-F (2004) Posterior triangular thalamic neurons convey nociceptive messages to the secondary somatosensory and insular cortices in the rat. J Neurosci Off J Soc Neurosci 24:752–761. doi:10.1523/JNEUROSCI.3272-03.2004

    CAS  Google Scholar 

  159. Rainville P, Duncan GH, Price DD et al (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277:968–971

    CAS  PubMed  Google Scholar 

  160. May A, Kaube H, Büchel C et al (1998) Experimental cranial pain elicited by capsaicin: a PET study. Pain 74:61–66

    CAS  PubMed  Google Scholar 

  161. Sato F, Akhter F, Haque T et al (2013) Projections from the insular cortex to pain-receptive trigeminal caudal subnucleus (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience 233:9–27. doi:10.1016/j.neuroscience.2012.12.024

    CAS  PubMed  Google Scholar 

  162. Noseda R, Constandil L, Bourgeais L et al (2010) Changes of meningeal excitability mediated by corticotrigeminal networks: a link for the endogenous modulation of migraine pain. J Neurosci Off J Soc Neurosci 30:14420–14429. doi:10.1523/JNEUROSCI.3025-10.2010

    CAS  Google Scholar 

  163. Price DD, Dubner R (1977) Neurons that subserve the sensory-discriminative aspects of pain. Pain 3:307–338

    CAS  PubMed  Google Scholar 

  164. Iwata K, Miyachi S, Imanishi M et al (2011) Ascending multisynaptic pathways from the trigeminal ganglion to the anterior cingulate cortex. Exp Neurol 227:69–78. doi:10.1016/j.expneurol.2010.09.013

    PubMed  Google Scholar 

  165. Lorenz J, Cross DJ, Minoshima S et al (2002) A unique representation of heat allodynia in the human brain. Neuron 35:383–393

    CAS  PubMed  Google Scholar 

  166. Dubner R, Bennett GJ (1983) Spinal and trigeminal mechanisms of nociception. Annu Rev Neurosci 6:381–418. doi:10.1146/annurev.ne.06.030183.002121

    CAS  PubMed  Google Scholar 

  167. Craig AD (2003) A new view of pain as a homeostatic emotion. Trends Neurosci 26:303–307

    CAS  PubMed  Google Scholar 

  168. Hadjipavlou G, Dunckley P, Behrens TE, Tracey I (2006) Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: a diffusion tensor imaging study in healthy controls. Pain 123:169–178. doi:10.1016/j.pain.2006.02.027

    PubMed  Google Scholar 

  169. Lorenz J, Minoshima S, Casey KL (2003) Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain J Neurol 126:1079–1091

    CAS  Google Scholar 

  170. Brighina F, Piazza A, Vitello G et al (2004) rTMS of the prefrontal cortex in the treatment of chronic migraine: a pilot study. J Neurol Sci 227:67–71. doi:10.1016/j.jns.2004.08.008

    PubMed  Google Scholar 

  171. Zhao L, Liu J, Dong X et al (2013) Alterations in regional homogeneity assessed by fMRI in patients with migraine without aura stratified by disease duration. J Headache Pain 14:85. doi:10.1186/1129-2377-14-85

    PubMed Central  PubMed  Google Scholar 

  172. Tessitore A, Russo A, Giordano A et al (2013) Disrupted default mode network connectivity in migraine without aura. J Headache Pain 14:89. doi:10.1186/1129-2377-14-89

    PubMed Central  PubMed  Google Scholar 

  173. Schwedt TJ, Schlaggar BL, Mar S et al (2013) Atypical resting-state functional connectivity of affective pain regions in chronic migraine. Headache 53:737–751. doi:10.1111/head.12081

    PubMed Central  PubMed  Google Scholar 

  174. Ichesco E, Quintero A, Clauw DJ et al (2012) Altered functional connectivity between the insula and the cingulate cortex in patients with temporomandibular disorder: a pilot study. Headache 52:441–454. doi:10.1111/j.1526-4610.2011.01998.x

    PubMed Central  PubMed  Google Scholar 

  175. Qiu E, Wang Y, Ma L et al (2013) Abnormal brain functional connectivity of the hypothalamus in cluster headaches. PLoS One 8:e57896. doi:10.1371/journal.pone.0057896

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Rocca MA, Valsasina P, Absinta M et al (2010) Central nervous system dysregulation extends beyond the pain-matrix network in cluster headache. Cephalalgia Int J Headache 30:1383–1391. doi:10.1177/0333102410365164

    Google Scholar 

  177. Yang P-F, Qi H-X, Kaas JH, Chen LM (2014) Parallel functional reorganizations of somatosensory areas 3b and 1, and S2 following spinal cord injury in squirrel monkeys. J Neurosci Off J Soc Neurosci 34:9351–9363. doi:10.1523/JNEUROSCI.0537-14.2014

    Google Scholar 

  178. Morelli N, Rota E, Gori S et al (2013) Brainstem activation in cluster headache: an adaptive behavioural response? Cephalalgia Int J Headache 33:416–420. doi:10.1177/0333102412474505

    Google Scholar 

  179. Riederer F, Gantenbein AR, Marti M et al (2013) Decrease of gray matter volume in the midbrain is associated with treatment response in medication-overuse headache: possible influence of orbitofrontal cortex. J Neurosci Off J Soc Neurosci 33:15343–15349. doi:10.1523/JNEUROSCI.3804-12.2013

    CAS  Google Scholar 

  180. Bolay H, Berman NEJ, Akcali D (2011) Sex-related differences in animal models of migraine headache. Headache 51:891–904. doi:10.1111/j.1526-4610.2011.01903.x

    PubMed  Google Scholar 

  181. Peterlin BL, Gupta S, Ward TN, Macgregor A (2011) Sex matters: evaluating sex and gender in migraine and headache research. Headache 51:839–842. doi:10.1111/j.1526-4610.2011.01900.x

    PubMed Central  PubMed  Google Scholar 

  182. Gazerani P, Andersen OK, Arendt-Nielsen L (2005) A human experimental capsaicin model for trigeminal sensitization. Gender-specific differences. Pain 118:155–163. doi:10.1016/j.pain.2005.08.009

    CAS  PubMed  Google Scholar 

  183. Andreason PJ, Zametkin AJ, Guo AC et al (1994) Gender-related differences in regional cerebral glucose metabolism in normal volunteers. Psychiatry Res 51:175–183

    CAS  PubMed  Google Scholar 

  184. Wager TD, Phan KL, Liberzon I, Taylor SF (2003) Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. Neuroimage 19:513–531

    PubMed  Google Scholar 

  185. Lopez-Larson MP, Anderson JS, Ferguson MA, Yurgelun-Todd D (2011) Local brain connectivity and associations with gender and age. Dev Cogn Neurosci 1:187–197. doi:10.1016/j.dcn.2010.10.001

    PubMed Central  PubMed  Google Scholar 

  186. Maleki N, Becerra L, Brawn J et al (2012) Concurrent functional and structural cortical alterations in migraine. Cephalalgia Int J Headache 32:607–620. doi:10.1177/0333102412445622

    Google Scholar 

  187. Paulson PE, Minoshima S, Morrow TJ, Casey KL (1998) Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76:223–229

    PubMed Central  CAS  PubMed  Google Scholar 

  188. Derbyshire SWG, Nichols TE, Firestone L et al (2002) Gender differences in patterns of cerebral activation during equal experience of painful laser stimulation. J Pain Off J Am Pain Soc 3:401–411

    Google Scholar 

  189. De Leeuw R, Albuquerque RJC, Andersen AH, Carlson CR (2006) Influence of estrogen on brain activation during stimulation with painful heat. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 64:158–166. doi:10.1016/j.joms.2005.10.006

    Google Scholar 

  190. Chang Z, Okamoto K, Bereiter DA (2012) Differential ascending projections of temporomandibular joint-responsive brainstem neurons to periaqueductal gray and posterior thalamus of male and female rats. Neuroscience 203:230–243. doi:10.1016/j.neuroscience.2011.11.042

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Boes T, Levy D (2012) Influence of sex, estrous cycle, and estrogen on intracranial dural mast cells. Cephalalgia Int J Headache 32:924–931. doi:10.1177/0333102412454947

    Google Scholar 

  192. Saleh TM, Connell BJ, McQuaid T, Cribb AE (2003) Estrogen-induced neurochemical and electrophysiological changes in the parabrachial nucleus of the male rat. Brain Res 990:58–65

    CAS  PubMed  Google Scholar 

  193. Greco R, Mangione A, Siani F et al (2013) Effects of CGRP receptor antagonism in nitroglycerin-induced hyperalgesia. Cephalalgia Int J Headache 34:594–604. doi:10.1177/0333102413517776

    CAS  Google Scholar 

  194. Eikermann-Haerter K, Baum MJ, Ferrari MD et al (2009) Androgenic suppression of spreading depression in familial hemiplegic migraine type 1 mutant mice. Ann Neurol 66:564–568. doi:10.1002/ana.21779

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hayrunnisa Bolay MD, PhD or Karl Messlinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bolay, H., Messlinger, K., Dux, M., Akcali, D. (2015). Anatomy of Headache. In: Ashina, M., Geppetti, P. (eds) Pathophysiology of Headaches. Headache. Springer, Cham. https://doi.org/10.1007/978-3-319-15621-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15621-7_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15620-0

  • Online ISBN: 978-3-319-15621-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics