Advertisement

Logspace and FPT Algorithms for Graph Isomorphism for Subclasses of Bounded Tree-Width Graphs

  • Bireswar Das
  • Murali Krishna Enduri
  • I. Vinod Reddy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8973)

Abstract

We give a deterministic logspace algorithm for the graph isomorphism problem for graphs with bounded tree-depth. We also show that the graph isomorphism problem is fixed parameter tractable for a related parameterized graph class where the graph parameter is the length of the longest cycle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arvind, V., Das, B., Köbler, J.: A logspace algorithm for partial 2-tree canonization. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 40–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Arvind, V., Das, B., Köbler, J., Kuhnert, S.: The isomorphism problem for k-trees is complete for logspace. Information and Computation 217, 1–11 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bouland, A., Dawar, A., Kopczyński, E.: On tractable parameterizations of graph isomorphism. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 218–230. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Das, B., Torán, J., Wagner, F.: Restricted space algorithms for isomorphism on bounded treewidth graphs. Information and Computation 217, 71–83 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph isomorphism is in log-space. In: Proceedings of 24th Annual IEEE Conference on Computational Complexity, pp. 203–214. IEEE (2009)Google Scholar
  6. 6.
    Datta, S., Nimbhorkar, P., Thierauf, T., Wagner, F.: Graph isomorphism for K3,3-free and K5-free graphs is in log-space. In: LIPIcs-Leibniz International Proceedings in Informatics. vol. 4. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2009)Google Scholar
  7. 7.
    Diestel, R.: Graph Theory Graduate Texts in Mathematics, vol. 173. Springer, GmbH & Company KG, Berlin and Heidelberg (2000)Google Scholar
  8. 8.
    Elberfeld, M., Jakoby, A., Tantau, T.: Algorithmic meta theorems for circuit classes of constant and logarithmic depth. In: Symposium on Theoretical Aspects of Computer Science, vol. 14, pp. 66–77 (2012)Google Scholar
  9. 9.
    Evdokimov, S., Ponomarenko, I.: Isomorphism of coloured graphs with slowly increasing multiplicity of jordan blocks. Combinatorica 19(3), 321–333 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Lindell, S.: A logspace algorithm for tree canonization. In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pp. 400–404. ACM (1992)Google Scholar
  12. 12.
    Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth. In: FOCS (2014), http://arxiv.org/abs/1404.0818
  13. 13.
    Nešetřil, J., De Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms, vol. 28. Springer (2012)Google Scholar
  14. 14.
    Nešetřil, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism bounds. European Journal of Combinatorics 27(6), 1022–1041 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24 (2008)Google Scholar
  16. 16.
    Yamazaki, K., Bodlaender, H.L., de Fluiter, B., Thilikos, D.M.: Isomorphism for graphs of bounded distance width. Algorithmica 24(2), 105–127 (1999)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bireswar Das
    • 1
  • Murali Krishna Enduri
    • 1
  • I. Vinod Reddy
    • 1
  1. 1.IIT GandhinagarIndia

Personalised recommendations