Applications of Quantum Information

  • Gianfranco CariolaroEmail author
Part of the Signals and Communication Technology book series (SCT)


This chapter presents some applications of Quantum Information Theory that deviate from the problem of reliably transmitting classical information. In fact, the inherent randomness in quantum measurements lends itself to devising methods for the fast automatic generation of true random numbers with quantum devices. Similarly, the possibility of detecting the presence of a measurement operation on a single quantum system, from another, nonorthogonal measurement on the same system, has opened the way to quantum cryptography. This constitutes an unconditionally secure replacement for the schemes that currently lie at the core of many protocols for securing the transmission and storing of information from a rational attacker. Eventually, we devote a paragraph to the topic of quantum teleportation, that is, the transfer of an unknown quantum state between two different locations that is achieved by making use of entanglement and only transmitting classical information.


Bell State Quantum Teleportation Public Channel BB84 Protocol Entangle Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Weedbrook, S. Pirandola, R. García-Patrón, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012)Google Scholar
  2. 2.
    G. Marsaglia, Random numbers fall mainly in the planes. Proc. Natl. Acad. Sci. 61(1), 25–28 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, A. Zeilinger, A fast and compact quantum random number generator. Rev. Sci. Instrum. 71(4), paper no. 1675 (2000)Google Scholar
  4. 4.
    M. Fürst, H. Weier, S. Nauerth, D.G. Marangon, C. Kurtsiefer, H. Weinfurter, High speed optical quantum random number generation. Opt. Express 18(12), 13029–13037 (2010)CrossRefGoogle Scholar
  5. 5.
    M. Stipčević, B.M. Rogina, Quantum random number generator based on photonic emission in semiconductors. Rev. Sci. Instrum. 78(4), paper no. 045104 (2007)Google Scholar
  6. 6.
    C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U.L. Andersen, C. Marquardt, G. Leuchs, A generator for unique quantum random numbers based on vacuum states. Nat. Photonics 4(10), 711–715 (2010)Google Scholar
  7. 7.
    T. Symul, S.M. Assad, P.K. Lam, Real time demonstration of high bitrate quantum random number generation with coherent laser light. Appl. Phys. Lett. 1, 2–5 (2011)Google Scholar
  8. 8.
    R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    T. Elgamal, A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES). Federal Information Processing Standards, Publication 197 (FIPS PUB 197), November 2001Google Scholar
  11. 11.
    National Institute of Standards and Technology (NIST), Secure Hash Standard (SHS), Federal Information Processing Standards, Publication 180-4 (FIPS PUB 180-4), March 2012Google Scholar
  12. 12.
    P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    S. Wiesner, Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983)CrossRefGoogle Scholar
  14. 14.
    W. Diffie, M.E. Hellman, New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    C.H. Bennett, G. Brassard, in Quantum cryptography: public-key distribution and coin tossing. IEEE International Conference on Computers, Systems and Signal Processing (IEEE Computer Society, Bangalore, 1984), pp. 175–179Google Scholar
  16. 16.
    U.M. Maurer, Secret key agreement by public discussion from common information. J. IEEE Trans. Inf. Theory 39(3), 733–742 (1993)CrossRefzbMATHGoogle Scholar
  17. 17.
    H.K. Lo, H. Chau, M. Ardehali, Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18(2), 133–165 (2004)CrossRefMathSciNetGoogle Scholar
  18. 18.
    M. Tomamichel, C.C.W. Lim, N. Gisin, R. Renner, Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)CrossRefGoogle Scholar
  19. 19.
    D. Bacco, M. Canale, N. Laurenti, G. Vallone, P. Villoresi, Experimental quantum key distribution with finite-key security analysis for noisy channels. Nat. Commun. 4, paper no. 2363, (2013)Google Scholar
  20. 20.
    C.H. Bennett, G. Brassard, N.D. Mermin, Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    G. Vallone, A. Dall’Arche, M. Tomasin, P. Villoresi, Loss tolerant device-independent quantum key distribution: a proof of principle. New J. Phys. 16(6), paper no. 063064 (2014)Google Scholar
  23. 23.
    D. Elkouss, J. Martinez-Mateo, V. Martin, Information reconciliation for quantum key distribution. Quantum Inf. Comput. 11(3&4), 226–238 (2011)zbMATHMathSciNetGoogle Scholar
  24. 24.
    C.H. Bennett, G. Brassard, C. Crepeau, U.M. Maurer, Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    F. Grosshans, P. Grangier, Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), paper n. 057902 (2002)Google Scholar
  26. 26.
    F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N.J. Cerf, P. Grangier, Quantum key distribution using Gaussian-modulated coherent states. Nature 421(6920), 41–238 (2003)CrossRefGoogle Scholar
  27. 27.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575–579 (1997)CrossRefGoogle Scholar
  29. 29.
    D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Experimental realization of tele-porting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)Google Scholar
  30. 30.
    A. Furusawa, J.L. Srensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, E.S. Polzik, Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)CrossRefGoogle Scholar
  31. 31.
    M.A. Nielsen, E. Knill, R. Laflamme, Complete quantum teleportation using nuclear magnetic resonance. Nature 396(6706), 52–55 (1998)CrossRefGoogle Scholar
  32. 32.
    J. Yin, J.G. Ren, H. Lu, Y. Cao, H.L. Yong, Y.P. Wu, C. Liu, S.K. Liao, F. Zhou, Y. Jiang, X.D. Cai, P. Xu, G.S. Pan, J.J. Jia, Y.M. Huang, H. Yin, J.Y. Wang, Y.A. Chen, C.Z. Peng, J.W. Pan, Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488(7410), 185–188 (2012)CrossRefGoogle Scholar
  33. 33.
    X.S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, A. Zeilinger, Quantum teleportation over 143 kilometres using active feed-forward. Nature 489(7415), 269–273 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Information EngineeringUniversity of PadovaPadovaItaly

Personalised recommendations