Skip to main content

Applications of Quantum Information

  • Chapter
  • First Online:
  • 2982 Accesses

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

This chapter presents some applications of Quantum Information Theory that deviate from the problem of reliably transmitting classical information. In fact, the inherent randomness in quantum measurements lends itself to devising methods for the fast automatic generation of true random numbers with quantum devices. Similarly, the possibility of detecting the presence of a measurement operation on a single quantum system, from another, nonorthogonal measurement on the same system, has opened the way to quantum cryptography. This constitutes an unconditionally secure replacement for the schemes that currently lie at the core of many protocols for securing the transmission and storing of information from a rational attacker. Eventually, we devote a paragraph to the topic of quantum teleportation, that is, the transfer of an unknown quantum state between two different locations that is achieved by making use of entanglement and only transmitting classical information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Citing the paper of Marsaglia [2] the mathematician that was the first to discover this weird behavior.

  2. 2.

    Historically, the first formulation of a QKD protocol [15] preceded that of general information theoretic key agreement schemes [16].

  3. 3.

    A somewhat subtle point should be made here. The security of the protocol does not guarantee that eavesdropping is unlikely, given that no errors have been detected in the minority basis. Rather, it states that if eavesdropping takes place, it will be detected with high probability. In symbols, let \(E\) denote the event that eavesdropping has taken place and \(D\) the event that no errors have been detected, we can only upper bound \(P_\mathrm{{md}} = \mathrm{P}[D|E]\), but nothing can be said about \(\mathrm{P}[E|D]\), since assumption can be made on the probability of event \(E\) which is totally under the control of the attacker.

  4. 4.

    That is, the number of positions at which they differ.

  5. 5.

    A class \(\mathcal{F}\) of functions mapping the same domain \(X\) to the same range \(Y\) is called universal hashing if it maps inputs to outputs “uniformly”, that is,

    $$ {\left\{ \begin{array}{ll}|\{f\,|\,f(x) = y\}| = |\mathcal{F}|/|Y| &{} {\text {for all}}\,\, x\in X, y \in Y\\ |\{f\,|\,f(x_1) = f(x_2)\}| = |\mathcal{F}|/|Y| &{} {\text {for all}}\, \,x_1, x_2 \in X. \end{array}\right. } $$
  6. 6.

    A complex-valued random variable \(X\) is called circular symmetric Gaussian if \(\mathfrak {R}X\) and \(\mathfrak {I}X\) are independent Gaussian variables with zero mean and the same variance \(\sigma ^2_X\).

References

  1. C. Weedbrook, S. Pirandola, R. García-Patrón, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012)

    Google Scholar 

  2. G. Marsaglia, Random numbers fall mainly in the planes. Proc. Natl. Acad. Sci. 61(1), 25–28 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, A. Zeilinger, A fast and compact quantum random number generator. Rev. Sci. Instrum. 71(4), paper no. 1675 (2000)

    Google Scholar 

  4. M. Fürst, H. Weier, S. Nauerth, D.G. Marangon, C. Kurtsiefer, H. Weinfurter, High speed optical quantum random number generation. Opt. Express 18(12), 13029–13037 (2010)

    Article  Google Scholar 

  5. M. Stipčević, B.M. Rogina, Quantum random number generator based on photonic emission in semiconductors. Rev. Sci. Instrum. 78(4), paper no. 045104 (2007)

    Google Scholar 

  6. C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U.L. Andersen, C. Marquardt, G. Leuchs, A generator for unique quantum random numbers based on vacuum states. Nat. Photonics 4(10), 711–715 (2010)

    Google Scholar 

  7. T. Symul, S.M. Assad, P.K. Lam, Real time demonstration of high bitrate quantum random number generation with coherent laser light. Appl. Phys. Lett. 1, 2–5 (2011)

    Google Scholar 

  8. R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Elgamal, A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES). Federal Information Processing Standards, Publication 197 (FIPS PUB 197), November 2001

    Google Scholar 

  11. National Institute of Standards and Technology (NIST), Secure Hash Standard (SHS), Federal Information Processing Standards, Publication 180-4 (FIPS PUB 180-4), March 2012

    Google Scholar 

  12. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Wiesner, Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983)

    Article  Google Scholar 

  14. W. Diffie, M.E. Hellman, New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  15. C.H. Bennett, G. Brassard, in Quantum cryptography: public-key distribution and coin tossing. IEEE International Conference on Computers, Systems and Signal Processing (IEEE Computer Society, Bangalore, 1984), pp. 175–179

    Google Scholar 

  16. U.M. Maurer, Secret key agreement by public discussion from common information. J. IEEE Trans. Inf. Theory 39(3), 733–742 (1993)

    Article  MATH  Google Scholar 

  17. H.K. Lo, H. Chau, M. Ardehali, Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18(2), 133–165 (2004)

    Article  MathSciNet  Google Scholar 

  18. M. Tomamichel, C.C.W. Lim, N. Gisin, R. Renner, Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)

    Article  Google Scholar 

  19. D. Bacco, M. Canale, N. Laurenti, G. Vallone, P. Villoresi, Experimental quantum key distribution with finite-key security analysis for noisy channels. Nat. Commun. 4, paper no. 2363, (2013)

    Google Scholar 

  20. C.H. Bennett, G. Brassard, N.D. Mermin, Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Vallone, A. Dall’Arche, M. Tomasin, P. Villoresi, Loss tolerant device-independent quantum key distribution: a proof of principle. New J. Phys. 16(6), paper no. 063064 (2014)

    Google Scholar 

  23. D. Elkouss, J. Martinez-Mateo, V. Martin, Information reconciliation for quantum key distribution. Quantum Inf. Comput. 11(3&4), 226–238 (2011)

    MATH  MathSciNet  Google Scholar 

  24. C.H. Bennett, G. Brassard, C. Crepeau, U.M. Maurer, Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. F. Grosshans, P. Grangier, Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), paper n. 057902 (2002)

    Google Scholar 

  26. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N.J. Cerf, P. Grangier, Quantum key distribution using Gaussian-modulated coherent states. Nature 421(6920), 41–238 (2003)

    Article  Google Scholar 

  27. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  Google Scholar 

  29. D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Experimental realization of tele-porting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    Google Scholar 

  30. A. Furusawa, J.L. Srensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, E.S. Polzik, Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)

    Article  Google Scholar 

  31. M.A. Nielsen, E. Knill, R. Laflamme, Complete quantum teleportation using nuclear magnetic resonance. Nature 396(6706), 52–55 (1998)

    Article  Google Scholar 

  32. J. Yin, J.G. Ren, H. Lu, Y. Cao, H.L. Yong, Y.P. Wu, C. Liu, S.K. Liao, F. Zhou, Y. Jiang, X.D. Cai, P. Xu, G.S. Pan, J.J. Jia, Y.M. Huang, H. Yin, J.Y. Wang, Y.A. Chen, C.Z. Peng, J.W. Pan, Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488(7410), 185–188 (2012)

    Article  Google Scholar 

  33. X.S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, A. Zeilinger, Quantum teleportation over 143 kilometres using active feed-forward. Nature 489(7415), 269–273 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Cariolaro .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cariolaro, G. (2015). Applications of Quantum Information. In: Quantum Communications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15600-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15600-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15599-9

  • Online ISBN: 978-3-319-15600-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics