• Gianfranco CariolaroEmail author
Part of the Signals and Communication Technology book series (SCT)


This introductory chapter begins with the history of Quantum Mechanics, which has proudly been there for more than a hundred years, and certainly represents one of the most successful scientific theories of all history. At a macroscopic level, the phenomena foreseen by Quantum Mechanics are not appreciable, and only by observing them on an atomic or subatomic scale do they appear in full evidence. The chapter then goes through the revolutionary concepts of this discipline, eventually describing the recent developments in Quantum Communications and Quantum Information. The second part of the chapter deals with the organization of the book, which consists of three parts: (I) Fundamentals, (II) Quantum Communications Systems, and (III) Quantum Information.


Quantum Information Quantum Computer Black Body Quantum Communication Quantum Cryptography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K.E. Cahill, R.J. Glauber, Ordered expansions in Boson amplitude operators. Phys. Rev. 177, 1857–1881 (1969)CrossRefGoogle Scholar
  2. 2.
    R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963)CrossRefMathSciNetGoogle Scholar
  3. 3.
    C.W. Helstrom, J.W.S. Liu, J.P. Gordon, Quantum-mechanical communication theory. Proc. IEEE 58(10), 1578–1598 (1970)CrossRefMathSciNetGoogle Scholar
  4. 4.
    C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)CrossRefzbMATHGoogle Scholar
  5. 5.
    K. Mattle, H. Weinfurter, P.G. Kwiat, A. Zeilinger, Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)CrossRefGoogle Scholar
  6. 6.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575–579 (1997)CrossRefGoogle Scholar
  9. 9.
    C. Weedbrook, S. Pirandola, R. Garcí a Patrón, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012)CrossRefGoogle Scholar
  10. 10.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)Google Scholar
  11. 11.
    C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Information EngineeringUniversity of PadovaPadovaItaly

Personalised recommendations