Skip to main content

Manipulation and Spectroscopy Using AFM/STM at Room Temperature

  • Chapter
  • First Online:
Noncontact Atomic Force Microscopy

Part of the book series: NanoScience and Technology ((NANO))

  • 4031 Accesses

Abstract

In the atom manipulation process with atomic force microscopy (AFM) at room temperature, reduction of the local energy barrier induced by interaction forces between atoms of a tip and a surface plays a key role. This means that the force value depending on the tip-apex condition determines the success of manipulation. In the first part of this chapter, the probability of the AFM atom manipulation is discussed. It is found that the value of the maximum attractive force, i.e. the tip reactivity, determines the manipulation capability. In addition, the potential barrier reduction can be used for various purposes such as local chemical reactions, barrier height control of the potential of nanospace, and fabrication of atomic-sized materials (i.e., nanoclusters). In the second part of the chapter, nanoclusters are fabricated as an application of the AFM atom manipulation. Half-unit cells of the Si(111)-(\(7\times 7\)) are used as a nanospace for structuring the atomic-sized clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such a broad dispersion of \(F_{\max }\) can be attributed to the varying degrees of tip-apex chemical reactivity [37, 38].

References

  1. T.R. Albrecht, P. Grütter, D. Horne, D. Rugar, J. Appl. Phys. 69, 668 (1991)

    Article  ADS  Google Scholar 

  2. S. Morita, R. Wiesendanger, E. Meyer (eds.), Noncontact Atomic Force Microscopy (Springer, Berlin, 2002)

    Google Scholar 

  3. F.J. Giessibl, Rev. Mod. Phys. 75, 949 (2003)

    Article  ADS  Google Scholar 

  4. M.A. Lantz, H.J. Hug, R. Hoffmann, P.J.A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, H.-J. Guntherodt, Science 291, 2580 (2001)

    Article  ADS  Google Scholar 

  5. Y. Sugimoto, P. Pou, M. Abe, P. Jelínek, R. Pérez, S. Morita, O. Custance, Nature 446, 64 (2007)

    Article  ADS  Google Scholar 

  6. M. Setvín, P. Mutombo, M. Ondráček, Z. Majzik, M. Švec, V. Cháb, I. Ošt’ádal, P. Sobotík, P. Jelínek, ACS Nano 6, 6969 (2012)

    Article  Google Scholar 

  7. S. Hirth, F. Ostendorf, M. Reichling, Nanotechnology 17, S148 (2006)

    Article  ADS  Google Scholar 

  8. Y. Sugimoto, P. Jelínek, P. Pou, M. Abe, S. Morita, R. Pérez, O. Custance, Phys. Rev. Lett. 98, 106104 (2007)

    Article  ADS  Google Scholar 

  9. M. Ternes, C.P. Lutz, C.F. Hirjibehedin, F.J. Giessibl, A.J. Heinrich, Science 319, 1066 (2008)

    Article  ADS  Google Scholar 

  10. Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez, S. Morita, Science 322, 413 (2008)

    Article  ADS  Google Scholar 

  11. Y. Sugimoto, K. Miki, M. Abe, S. Morita, Phys. Rev. B 78, 205305 (2008)

    Article  ADS  Google Scholar 

  12. O. Custance, R. Perez, S. Morita, Nat. Nanotechnol. 4, 803 (2009)

    Article  ADS  Google Scholar 

  13. A. Yurtsever, Y. Sugimoto, M. Abe, K. Matsunaga, I. Tanaka, S. Morita, Phys. Rev. B 84, 085413 (2011)

    Article  ADS  Google Scholar 

  14. A. Sweetman, S. Jarvis, R. Danza, J. Bamidele, S. Gangopadhyay, G.A. Shaw, L. Kantorovich, P. Moriarty, Phys. Rev. Lett. 106, 136101 (2011)

    Article  ADS  Google Scholar 

  15. H.Q. Mao, N. Li, X. Chen, Q.K. Xue, J. Phys. Condens. Matter 24, 084004 (2012)

    Article  ADS  Google Scholar 

  16. R. Pawlak, S. Fremy, S. Kawai, T. Glatzel, H. Fang, L.A. Fendt, F. Diederich, E. Meyer, ACS Nano 6, 6318 (2012)

    Article  Google Scholar 

  17. G. Langewisch, J. Falter, H. Fuchs, A. Schirmeisen, Phys. Rev. Lett. 110, 036101 (2013)

    Article  ADS  Google Scholar 

  18. L. Pizzagalli, A. Baratoff, Phys. Rev. B 68, 115427 (2003)

    Article  ADS  Google Scholar 

  19. U. Kurpick, T.S. Rahman, Phys. Rev. Lett. 83, 2765 (1999)

    Article  ADS  Google Scholar 

  20. A. Kuhnle, G. Meyer, S.W. Hla, K.H. Rieder, Surf. Sci. 499, 15 (2002)

    Article  ADS  Google Scholar 

  21. D.M. Eigler, E.K. Schweizer, Nature (London) 344, 524 (1990)

    Article  ADS  Google Scholar 

  22. N. Nilius, T.M. Wallis, W. Ho, Science 297, 1853 (2002)

    Article  ADS  Google Scholar 

  23. J.A. Stroscio, F. Tavazza, J.N. Crain, R.J. Celotta, A.M. Chaka, Science 313, 948 (2006)

    Article  ADS  Google Scholar 

  24. S. Loth, S. Baumann, C.P. Lutz, D.M. Eigler, A.J. Heinrich, Science 335, 2012 (2012)

    Article  Google Scholar 

  25. A.A. Khajetoorians, B. Baxevanis, C. Hübner, T. Schlenk, S. Krause, T.O. Wehling, S. Lounis, A. Lichtenstein, D. Pfannkuche, J. Wiebe, R. Wiesendanger, Science 339, 55 (2013)

    Google Scholar 

  26. Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance, S. Morita, Nat. Mater. 4, 156 (2005)

    Article  ADS  Google Scholar 

  27. F. Ming, K. Wang, S. Pan, J. Liu, X. Zhang, J. Yang, X. Xiao, ACS Nano 5, 7608 (2011)

    Article  Google Scholar 

  28. Y. Sugimoto, A. Yurtsever, M. Abe, S. Morita, M. Ondrác̆ek, R. Pérez, P. Jelínek, ACS Nano 7, 7370 (2013)

    Article  Google Scholar 

  29. M. Abe, Y. Sugimoto, O. Custance, S. Morita, Appl. Phys. Lett. 87, 173503 (2005)

    Article  ADS  Google Scholar 

  30. M. Abe, Y. Sugimoto, T. Namikawa, K. Morita, N. Oyabu, S. Morita, Appl. Phys. Lett. 90, 203103 (2007)

    Article  ADS  Google Scholar 

  31. N. Oyabu, O. Custance, I. Yi, Y. Sugawara, S. Morita, Phys. Rev. Lett. 90, 176102 (2003)

    Article  ADS  Google Scholar 

  32. J.E. Sader, S.P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004)

    Article  ADS  Google Scholar 

  33. I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)

    Article  ADS  Google Scholar 

  34. S. Jarvis, A. Sweetman, J. Bamidele, L. Kantorovich, P. Moriarty, Phys. Rev. B 85, 235305 (2012)

    Article  ADS  Google Scholar 

  35. H. Uchida, D. Huang, F.m c Grey, M. Aono, Phys. Rev. Lett. 70, 2040 (1993)

    Article  ADS  Google Scholar 

  36. B.C. Stipe, M.A. Rezaei, W. Ho, Phys. Rev. Lett. 79, 4397 (1997)

    Article  ADS  Google Scholar 

  37. A. Yurtsever, Y. Sugimoto, H. Tanaka, M. Abe, S. Morita, M. Ondracek, P. Pou, R. Perez, P. Jelinek, Phys. Rev. B 87, 155403 (2013)

    Article  ADS  Google Scholar 

  38. P. Sharp, S. Jarvis, R. Woolley, A. Sweetman, L. Kantorovich, C. Pakes, P. Moriarty, Appl. Phys. Lett. 100, 233120 (2012)

    Article  ADS  Google Scholar 

  39. D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos, P.L. McEuen, Nature 389, 699 (1997)

    Article  ADS  Google Scholar 

  40. V. Ray, R. Subramanian, P. Bhadrachalam, L.C. Ma, C.U. Kim, S.J. Koh, Nat. Nanotechnol. 3, 603 (2008)

    Article  Google Scholar 

  41. M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115, 301 (1989)

    Article  Google Scholar 

  42. M. Haruta, Catal. Today 36, 153 (1997)

    Article  Google Scholar 

  43. M. Valden, X. Lai, D.W. Goodman, Science 281, 1647 (1998)

    Article  ADS  Google Scholar 

  44. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  45. J.-L. Li, J.-F. Jia, X.-J. Liang, X. Liu, J.-Z. Wang, Q.-K. Xue, Z.-Q. Li, J.S. Tse, Z. Zhang, S.B. Zhang, Phys. Rev. Lett. 88, 066101 (2002)

    Article  ADS  Google Scholar 

  46. S.-C. Li, J.-F. Jia, R.-F. Dou, Q.-K. Xue, I.G. Batyrev, S.B. Zhang, Phys. Rev. Lett. 93, 116103 (2004)

    Article  ADS  Google Scholar 

  47. Y. Sugimoto, A. Yurtsever, N. Hirayama, M. Abe, S. Morita, Nat. Commun. 5, 4360 (2014)

    Article  ADS  Google Scholar 

  48. C. Zhang, G. Chen, K. Wang, H. Yang, T. Su, C.T. Chan, M.M.T. Loy, X. Xiao, Phys. Rev. Lett. 94, 176104 (2005)

    Article  ADS  Google Scholar 

  49. Y. Sugimoto, Y. Nakajima, D. Sawada, K. Morita, M. Abe, S. Morita, Phys. Rev. B 81, 245322 (2010)

    Article  ADS  Google Scholar 

  50. K. Wang, C. Zhang, M.M.T. Loy, X. Xiao, Phys. Rev. Lett. 94, 036103 (2005)

    Article  ADS  Google Scholar 

  51. Y. Zhou, Q.H. Wu, H.Z.H. Zhou, C. Zhan, J. Kang, Surf. Sci. 602, 638 (2008)

    Google Scholar 

  52. J.M. Gómez-Rodríguez, J.J. Sáenz, A.M. Baró, J.-Y. Veuillen, R.C. Cinti, Phys. Rev. Lett. 76, 799 (1996)

    Article  ADS  Google Scholar 

  53. G. Chizhov, I. Lee, R.F. Willis, Phys. Rev. B 56, 12316 (1997)

    Google Scholar 

  54. Y. Wu, Y. Zhou, C. Zhou, H. Zhan, J. Kang, J. Chem. Phys. 133, 124706 (2010)

    Google Scholar 

  55. N. Sasaki, M. Tsukada, Jpn. J. Appl. Phys. 39, L1334–L1337 (2000)

    Google Scholar 

  56. L.N. Kantorovich, T. Trevethan, Phys. Rev. Lett. 93, 236102 (2004)

    Article  ADS  Google Scholar 

  57. N. Oyabu, P. Pou, T. Sugimoto, P. Jelinek, M. Abe, S. Morita, R. Perez, O. Custance, Phys. Rev. Lett. 96, 106101 (2006)

    Article  ADS  Google Scholar 

  58. A. Schirmeisen, D. Weiner, H. Fuchs, Phys. Rev. Lett. 97, 136101 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), and by the Funding Program for Next Generation World-Leading Researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abe, M., Sugimoto, Y., Morita, S. (2015). Manipulation and Spectroscopy Using AFM/STM at Room Temperature. In: Morita, S., Giessibl, F., Meyer, E., Wiesendanger, R. (eds) Noncontact Atomic Force Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15588-3_4

Download citation

Publish with us

Policies and ethics