Skip to main content

Advanced Instrumentation of Frequency Modulation AFM for Subnanometer-Scale 2D/3D Measurements at Solid-Liquid Interfaces

  • Chapter
  • First Online:
Noncontact Atomic Force Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Since the first demonstration of true atomic-resolution imaging by frequency modulation atomic force microscopy (FM-AFM) in liquid, the method has been used for imaging subnanometer-scale structures of various materials including minerals, biological systems and other organic molecules. Rencetly, there have been further advancements in the FM-AFM instrumentation. Three-dimensional (3D) force measurement techniques are proposed for visualizing 3D hydration structures formed at a solid-liquid interface. These methods further enabled to visualize 3D distributions of flexible surface structures at interfaces between soft materials and water. Furthermore, the fundamental performance such as force sensitivity and operation speed have been significantly improved using a small cantilever and high-speed phase detector. These technical advancements enabled direct visualization of atomic-scale interfacial phenomena at 1 frame/s. In this chapter, these recent advancements in the FM-AFM instrumentation and their applications to the studies on various interfacial phenomena are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.R. Albrecht, P. Grütter, D. Horne, D. Ruger, J. Appl. Phys. 69, 668 (1991)

    ADS  Google Scholar 

  2. F.J. Giessibl, Science 267, 68 (1995)

    ADS  Google Scholar 

  3. S. Morita, R. Wiesendanger, E. Meyer (eds.), Noncontact Atomic Force Microscopy (Nanoscience and Technology) (Springer, Berlin, 2002)

    Google Scholar 

  4. S.P. Jarvis, T. Uchihashi, T. Ishida, H. Tokumoto, Y. Nakayama, J. Phys. Chem. B 104, 6091 (2000)

    Google Scholar 

  5. S.P. Jarvis, T. Ishida, T. Uchihashi, Y. Nakayama, H. Tokumoto, Appl. Phys. A 72, S129 (2001)

    ADS  Google Scholar 

  6. K. Kobayashi, H. Yamada, K. Matsushige, Appl. Surf. Sci. 188, 430 (2002)

    ADS  Google Scholar 

  7. T. Okajima, H. Sekiguchi, H. Arakawa, A. Ikai, Appl. Surf. Sci. 68, 210 (2003)

    Google Scholar 

  8. H. Sekiguchi, T. Okajima, H. Arakawa, S. Maeda, A. Takashima, A. Ikai, Appl. Surf. Sci. 61, 210 (2003)

    Google Scholar 

  9. T. Uchihashi, M.J. Higgins, Y. Nakayama, J.E. Sader, S.P. Jarvis, Nanotechnology 16, S49 (2005)

    ADS  Google Scholar 

  10. M.J. Higgins, C.K. Riener, T. Uchihashi, J.E. Sader, R. McKendry, S.P. Jarvis, Nanotechnology 16, S85 (2005)

    ADS  Google Scholar 

  11. A. Sasahara, S. Kitamura, H. Uetsuka, H. Onishi, J. Phys. Chem. B 108, 15735 (2004)

    Google Scholar 

  12. T. Fukuma, K. Kobayashi, K. Matsushige, H. Yamada, Appl. Phys. Lett. 87, 034101 (2005)

    ADS  Google Scholar 

  13. T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige, H. Yamada, Rev. Sci. Instrum. 76, 053704 (2005)

    ADS  Google Scholar 

  14. B.W. Hoogenboom, H.J. Hug, Y. Pellmont, S. Martin, P.L.T.M. Frederix, D. Fotiadis, A. Engel, Appl. Phys. Lett. 88, 193109 (2006)

    Google Scholar 

  15. S. Nishida, D. Kobayashi, T. Sakurada, T. Nakazawa, Y. Hoshi, H. Kawakatsu, Rev. Sci. Instrum. 79, 123703 (2008)

    ADS  Google Scholar 

  16. S. Rode, N. Oyabu, K. Kobayashi, H. Yamada, A. Kühnle, Langmuir 25, 2850 (2009)

    Google Scholar 

  17. M. Higgins, M. Polcik, T. Fukuma, J. Sader, Y. Nakayama, S.P. Jarvis, Biophys. J. 91, 2532 (2006)

    ADS  Google Scholar 

  18. T. Fukuma, M.J. Higgins, S.P. Jarvis, Biophys. J. 92, 3603 (2007)

    ADS  Google Scholar 

  19. T. Fukuma, M.J. Higgins, S.P. Jarvis, Phys. Rev. Lett. 98, 106101 (2007)

    ADS  Google Scholar 

  20. T. Fukuma, A.S. Mostaert, S.P. Jarvis, Nanotechnology 19, 384010 (2008)

    ADS  Google Scholar 

  21. H. Yamada, K. Kobayashi, T. Fukuma, Y. Hirata, T. Kajita, K. Matsushige, Appl. Phys. Express 2, 095007 (2009)

    ADS  Google Scholar 

  22. H. Asakawa, T. Fukuma, Nanotechnology 20, 264008 (2009)

    ADS  Google Scholar 

  23. T. Fukuma, Y. Ueda, S. Yoshioka, H. Asakawa, Phys. Rev. Lett. 104, 016101 (2010)

    ADS  Google Scholar 

  24. J.E. Sader, S.P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004)

    ADS  Google Scholar 

  25. N. Kobayashi, S. Itakura, H. Asakawa, T. Fukuma, J. Phys. Chem. C 117, 24388 (2013)

    Google Scholar 

  26. H. Asakawa, S. Yoshioka, K. Nishimura, T. Fukuma, ACS NANO 6, 9013 (2012)

    Google Scholar 

  27. K. Kimura, S. Ido, N. Oyabu, K. Kobayashi, Y. Hirata, T. Imai, H. Yamada, J. Chem. Phys. 132, 194705 (2010)

    ADS  Google Scholar 

  28. T. Hiasa, K. Kimura, H. Onishi, M. Ohta, K. Watanabe, R. Kokawa, N. Oyabu, K. Kobayashi, H. Yamada, J. Phys. Chem. C 114, 21423 (2010)

    Google Scholar 

  29. T. Hiasa, K. Kimura, H. Onishi, Phys. Chem. Chem. Phys. 14, 8419 (2012)

    Google Scholar 

  30. T. Hiasa, K. Kimura, H. Onishi, Coll. Surf. A 396, 203 (2012)

    Google Scholar 

  31. T. Hiasa, K. Kimura, H. Onishi, J. Phys. Chem. C 116, 26475 (2012)

    Google Scholar 

  32. R. Nishioka, T. Hiasa, K. Kimura, H. Onishi, J. Phys. Chem. C 117, 2939 (2013)

    Google Scholar 

  33. T. Sugihara, I. Hayashi, H. Onishi, K. Kimura, A. Tamura, Chem. Phys. 419, 74 (2013)

    ADS  Google Scholar 

  34. T. Hiasa, H. Onishi, Langmuir 29, 5801 (2013)

    Google Scholar 

  35. T. Hiasa, K. Kenjiro, H. Onishi, J. Phys. Chem. C 117, 5730 (2013)

    Google Scholar 

  36. M. Watkins, A.L. Shluger, Phys. Rev. Lett. 105, 196101 (2010)

    ADS  Google Scholar 

  37. M. Harada, M. Tsukada, Phys. Rev. B 80, 035414 (2010)

    ADS  Google Scholar 

  38. M. Tsukada, N. Watanabe, M. Harada, K. Tagami, J. Vac. Sci. Technol. B 28, C4C1 (2010)

    Google Scholar 

  39. M. Watkins, M.L. Berkowitz, A. Shluger, Phys. Chem. Chem. Phys. 13, 12584 (2011)

    Google Scholar 

  40. M. Watkins, B. Reischl, J. Chem. Phys. 138, 154703 (2013)

    ADS  Google Scholar 

  41. B. Reischl, M. Watkins, A. S. Foster, J. Chem. Theory Comput. 9, 600 (2013)

    Google Scholar 

  42. S.P. Jarvis, A. Oral, T.P. Weihs, J.B. Pethica, Rev. Sci. Instrum. 64, 3515 (1993)

    ADS  Google Scholar 

  43. N. Umeda, S. Ishizaki, H. Uwai, J. Vac. Sci. Technol. B 9, 1318 (1991)

    Google Scholar 

  44. Y. Martin, C.C. Williams, H.K. Wickramasinghe, J. Appl. Phys. 61, 4723 (1987)

    ADS  Google Scholar 

  45. S. Morita, R. Wiesendanger, F.J. Giessibl (eds.), Noncontact Atomic Force Microscopy Volume 2 (Nanoscience and Technology) (Springer, Berlin, 2009)

    Google Scholar 

  46. H. Hölscher, S.M. Langkat, A. Schwarz, R. Wiesendanger, Appl. Phys. Lett. 81, 4428 (2002)

    ADS  Google Scholar 

  47. B.J. Albers, T.C. Schwendemann, M.Z. Baykara, N. Pilet, M. Liebmann, E.I. Altman, U.D. Schwarz, Nat. Nanotech. 4, 307 (2009)

    ADS  Google Scholar 

  48. M.B. Viani, T.E. Schäffer, A. Chand, M. Rief, H.E. Gaub, P.K. Hansma, J. Appl. Phys. 86, 2258 (1999)

    ADS  Google Scholar 

  49. S. Hosaka, K. Etoh, A. Kikukawa, H. Koyanagi, K. Itoh, Microelectron. Eng. 46, 109 (1999)

    Google Scholar 

  50. T.E. Schäffer, P.K. Hansma, J. Appl. Phys. 84, 4661 (1998)

    ADS  Google Scholar 

  51. T. Fukuma, K. Onishi, N. Kobayashi, A. Matsuki, H. Asakawa, Nanotechnology 23, 135706 (2012)

    ADS  Google Scholar 

  52. T. Fukuma, Rev. Sci. Instrum. 80, 023707 (2009)

    ADS  Google Scholar 

  53. T. Fukuma, S.P. Jarvis, Rev. Sci. Instrum. 77, 043701 (2006)

    ADS  Google Scholar 

  54. K. Miyata, S. Usho, S. Yamada, S. Furuya, K. Yoshida, H. Asakawa, T. Fukuma, Rev. Sci. Instrum. 84, 043705 (2013)

    ADS  Google Scholar 

  55. Y. Mitani, M. Kubo, K. Muramoto, T. Fukuma, Rev. Sci. Instrum. 80, 083705 (2009)

    ADS  Google Scholar 

  56. K. Miyata, H. Asakawa, T. Fukuma, Appl. Phys. Lett. 103, 203104 (2013)

    ADS  Google Scholar 

  57. H. Asakawa, K. Ikegami, M. Setou, N. Watanabe, M. Tsukada, T. Fukuma, Biophys. J. 101, 1270 (2011)

    ADS  Google Scholar 

  58. J. Hendriksen, A.C. Rowat, E. Brief, Y.W. Hsueh, J.L. Thewalt, M.J. Zuckermann, J.H. Ipsen, Biophys. J. 90, 1639 (2006)

    ADS  Google Scholar 

  59. T.J. McIntosh, A.D. Magid, S.A. Simon, Biochemistry 28, 17 (1989)

    Google Scholar 

  60. C. Mineo, G.L. James, E.J. Smart, R.G.W. Anderson, 271, 11930 (1996)

    Google Scholar 

  61. M.R. Vist, J.H. Davis, Biochemistry 29, 451 (1990)

    Google Scholar 

  62. A.M. Smondyrev, M.L. Berkowitz, Biophys. J. 771, 2075 (1999)

    Google Scholar 

  63. L. Miao, M. Nielsen, J. Thewalt, J.H. Ipsen, M. Bloom, M.J. Zuckermann, O.G. Mouritsen, Biophys. J. 82, 1429 (2002)

    Google Scholar 

  64. E. Nogales, S.G. Wolf, K.H. Downing, Nature 391, 199 (1998)

    ADS  Google Scholar 

  65. Y. Kimura, N. Kurabe, K. Ikegami, K. Tsutsumi, Y. Konishi, O.I. Kaplan, H. Kunitomo, Y. Iino, O.E. Blacque, M. Setou 285, 22934 (2010)

    Google Scholar 

  66. N. Senguttuvan, M. Aoshima, K. Sumiya, H. Ishibashi, J. Cryst. Growth 280, 462 (2005)

    ADS  Google Scholar 

  67. I. Nicoara, M. Stef, A. Pruna, J. Cryst. Growth 310, 1470 (2008)

    ADS  Google Scholar 

  68. S. Wakahara, Y. Furuya, T. Yanagida, Y. Yokota, J. Pejchal, M. Sugiyama, N. Kawaguchi, D. Totsuka, A. Yoshikawa, Opt. Mater. 34, 729 (2012)

    Google Scholar 

  69. Y. Zhang, X. Xiang, W.J. Weber, Nucl. Instr. Meth. 266, 2750 (2008)

    Google Scholar 

  70. L.A. Perez, G.H. Nancollas, Coll. Surf. 52, 231 (1991)

    Google Scholar 

  71. H. Moller, H.E.L. Madsen, J. Cryst. Growth 71, 673 (1985)

    ADS  Google Scholar 

  72. T. Aoba, O. Fejerskov, Crit. Rev. Oral Biol. Med. 13, 155 (2002)

    Google Scholar 

  73. O. Prymak, V. Sokolova, T. Peitsch, M. Epple 6, 498 (2006)

    Google Scholar 

  74. S.M. Hamza, S.K. Hamdona, J. Phys. Chem. 95, 3149 (1991)

    Google Scholar 

  75. Z. Amjad, Langmuir 9, 597 (1993)

    Google Scholar 

  76. C.H. de Vreugd, J.H. ter Horst, P.F.M. Durville, G.J. Witkamp, G.M. van Rosmalen, Coll. Surf. A 154, 259 (1999)

    Google Scholar 

  77. C.Y. Tai, J. Cryst. Growth 206, 109 (1999)

    ADS  Google Scholar 

  78. C.Y. Tai, P.C. Chen, T.M. Tsao, J. Cryst. Growth 290, 576 (2006)

    Google Scholar 

  79. J.J. Eksteen, M. Pelser, M.S. Onyango, L. Lorenzen, C. Aldrich, G.A. Georgalli, Hydrometallurgy 91, 104 (2008)

    Google Scholar 

  80. P.E. Hillner, S. Manne, P.K. Hansma, A.J. Gratz, Faraday Discuss. 95, 191 (1993)

    ADS  Google Scholar 

  81. D. Bosbach, G. Jordan, W. Rammensee, Eur. J. Mineral. 7, 267 (1995)

    Google Scholar 

  82. G. Jordan, W. Rammensee, Surf. Sci. 371, 371 (1997)

    ADS  Google Scholar 

  83. M.H. Jr., A.F. White (eds.), Review in Mineralogy: Mineral Water Interface Geochemicstry (Mineralogical Society of America, 1990)

    Google Scholar 

  84. E.S. Boek, P.V. Coveney, N.T. Skipper, J. Am. Chem. Soc. 117, 12608 (1995)

    Google Scholar 

  85. S. Karaborni, B. Smit, W. Heidug, J. Urai, E. van Oort, Science 271, 1102 (1996)

    ADS  Google Scholar 

  86. G.R. Edwards, L.F. Evans, A.F. Zipper, Trans. Faraday Soc. 66, 220 (1970)

    Google Scholar 

  87. J.L. Caslavsky, K. Vedam, J. Appl. Phys. 42, 516 (1971)

    ADS  Google Scholar 

  88. Y. Leng, P.T. Cummings, J. Chem. Phys. 124, 074711 (2006)

    ADS  Google Scholar 

  89. G. Sposito, R. Prost, Chem. Rev. 82, 553 (1982)

    Google Scholar 

  90. M. Odelius, M. Bernasconi, M. Parrinello, Phys. Rev. Lett. 78, 2855 (1997)

    ADS  Google Scholar 

  91. P.B. Miranda, L. Xu, Y.R. Shen, M. Salmeron, Phys. Rev. Lett. 81, 5876 (1998)

    ADS  Google Scholar 

  92. R. Bergman, J. Swenson, Nature 403, 283 (2000)

    ADS  Google Scholar 

  93. J. Swenson, R. Bergman, W. Howells, J. Chem. Phys. 113, 2873 (2000)

    ADS  Google Scholar 

  94. L. Cheng, P. Fenter, K.L. Nagy, M.L. Schlegel, N.C. Sturchio, Phys. Rev. Lett. 87, 156103 (2001)

    ADS  Google Scholar 

  95. S.H. Park, G. Sposito, Phys. Rev. Lett. 89, 085501 (2002)

    ADS  Google Scholar 

  96. J.N. Israelachvili, G.E. Adams, Nature 262, 774 (1976)

    ADS  Google Scholar 

  97. F.J. Giessibl, S. Hembacher, H. Bielefeldt, J. Mannhart, Science 289, 422 (2000)

    ADS  Google Scholar 

  98. M. Ge, J.H. Freed, Biophys. J. 85, 4023 (2003)

    Google Scholar 

  99. P. Ball, Chem. Rev. 108, 74 (2008)

    Google Scholar 

  100. Y. Levy, J.N. Onuchic, Annu. Rev. Biophys. Biomol. Struct. 35, 389 (2006)

    Google Scholar 

  101. J.F. Nagle, S. Tristram-Nagle, Biochim. Biophys. Acta 1469, 159 (2000)

    Google Scholar 

  102. J. Milhaud, Biochim. Biophys. Acta 1663, 19 (2004)

    Google Scholar 

  103. E. Márazková, P. Hobza, M. Bohl, D.R. Gauger, W. Pohle, J. Phys. Chem. 109, 15126 (2005)

    Google Scholar 

  104. J. Sýkora, P. Kapusta, V. Fidler, M. Hof, Langmuir 18, 571 (2002)

    Google Scholar 

  105. M.L. Berkowitz, D.L. Bostick, S. Pandit, Chem. Rev. 106, 1527 (2006)

    Google Scholar 

  106. J. Cheng, S. Pautot, D.A. Weitz, X.S. Xie, Proc. Natl. Acad. Sci. USA 100, 9826 (2003)

    ADS  Google Scholar 

  107. M. Pasenkiewicz-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, A. Kusumi, J. Phys. Chem. A 101, 3677 (1997)

    Google Scholar 

  108. J. Fitter, R.E. Lechner, N.A. Dencher, J. Phys. Chem. 103, 8036 (1999)

    Google Scholar 

  109. W. Zhao, D.E. Moilanen, E.E. Fenn, M.D. Fayer, Biophys. J. 130, 13927 (2008)

    Google Scholar 

Download references

Acknowledgments

This work was supported by KAKENHI (25706023), Japan Society for the Promotion of Science and ACT-C, Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Fukuma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fukuma, T. (2015). Advanced Instrumentation of Frequency Modulation AFM for Subnanometer-Scale 2D/3D Measurements at Solid-Liquid Interfaces. In: Morita, S., Giessibl, F., Meyer, E., Wiesendanger, R. (eds) Noncontact Atomic Force Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15588-3_20

Download citation

Publish with us

Policies and ethics