Advertisement

Single Molecule Force Spectroscopy

Chapter
  • 2.5k Downloads
Part of the NanoScience and Technology book series (NANO)

Abstract

Molecular-scale forces has a pivotal role in biological, chemical and physical processes. Single molecule force spectroscopy refers to the study of these forces as well as the mechanical properties of single molecules under applied forces. The term has appeared more than two decades ago in the field of biochemistry, however the recent advances of atomic force microscopy (AFM) operated at low temperature have brought such studies down to the atomic level hence opening new exciting perspectives. At this ultimate level, the intrinsic properties of individual organic species are now quantified by measuring force and conductance informations at the sub-molecular level. Not only restricted to the mechanics of the adsorbates, these techniques are nowadays employed to reveal their chemical structures, their electronic characteristics as well as their optical properties. This chapter reviews proto-typical experiments revealing the fundamental properties of single molecules using advanced spectroscopic techniques at low temperature. First, we will discuss the requirements of such spectroscopic experiments as well as the “essence” of the physical quantities extracted from them. Section 11.3 will respectively show the capability of this approach in the elucidation of the structure of single molecules, the mechanical properties, their internal mechanical behavior under various manipulation processes. Section 11.4 will be dedicated to the study of their electronic and optical properties down to the sub-molecular scale. Finally, Sect. 11.5 will discuss the future prospects.

Keywords

Non-contact atomic force microscopy (ncAFM) Single molecule Force spectroscopy Manipulation Properties 

Notes

Acknowledgments

The authors are very grateful to their colleagues: Dr. Sweetlana Fremy for her help on performing the porphyrin experiments and her work on LCPD mapping of CuPc and Dr. Ali Sadeghi and Dr. Alexis Baratoff for fruitful discussions and their precious theoretical contributions. The authors also wish to acknowledge their collaborators: Pr. E. Gnecco for the extended Frenkel-Kantorova model, the group of Pr. F. Diederich for providing the porphyrin molecules, the group of Pr. L. Grill and Pr. S. Hecht for their contribution in the DBTF molecule experiments, the group of Pr. A. Orita for providing the FFPB molecules, the group of Pr. Urback for the numerical calculations of the friction experiment with porphyrins and the group of Pr. D. Spitzer and Dr. V. Pichot for the preparation of the nanodiamond samples.

These works is supported by the from the Swiss National Science Foundation (NSF), the Swiss nanoscience Institute (SNI), the Swiss National Center of Competence in Research on Nanoscale Science (NCCR-NANO), the PRESTO project of the Japan Science and Technology agency (JST), the Polish-Swiss Project PSPB-085/2010 and the EU Cost action MP13V3.

References

  1. 1.
    G. Binnig, H. Roher, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982)CrossRefADSGoogle Scholar
  2. 2.
    G. Binnig, C.F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986)CrossRefADSGoogle Scholar
  3. 3.
    S. Morita, R. Wiesendanger, E. Meyer, Noncontact Atomic Force Microscopy (Springer, Berlin, 2002)CrossRefGoogle Scholar
  4. 4.
    E. Meyer, H.J. Hug, R. Bennewitz, Scanning Probe Microscopy: The Lab on a Tip (Springer, Berlin, 2003)Google Scholar
  5. 5.
    K.C. Neuman, A. Nagy, Nature Methods 5, 491–505 (2008)CrossRefGoogle Scholar
  6. 6.
    F.J. Giessibl, Science 267, 68 (1995)CrossRefADSGoogle Scholar
  7. 7.
    S. Kitamura, M. Iwatsuki, JJAP 34, L145–L148 (1995)ADSGoogle Scholar
  8. 8.
    H. Ueyama, M. Ohta, Y. Sugawara, S. Morita, Jpn. J. Appl. Phys. 34, L1086 (1995)CrossRefADSGoogle Scholar
  9. 9.
    S. Orisaka, T. Minobe, T. Uchihashi, Y. Sugawara, S. Morita, Appl. Surf. Sci. 140, 243 (1999)CrossRefADSGoogle Scholar
  10. 10.
    Ch. Loppacher, M. Bammerlin, M. Guggisberg, S. Schär, R. Bennewitz, A. Baratoff et al., Phys. Rev. B 62, 16944 (1999)CrossRefADSGoogle Scholar
  11. 11.
    S.I. Kitamura, M. Iwatsuki, Jpn. J. Appl. Phys. 34, L145 (1995)CrossRefADSGoogle Scholar
  12. 12.
    A. Schwarz, W. Allers, U.D. Schwarz, R. Wiesendanger, Phys. Rev. B 61, 2837 (2000)CrossRefADSGoogle Scholar
  13. 13.
    M. Bammelin et al., Probe Microsc. 1, 3 (1997)Google Scholar
  14. 14.
    W. Allers, A. Schwarz, U.D. Schwarz, R. Wiesendanger, Europhys. Lett. 48, 276 (1999)CrossRefADSGoogle Scholar
  15. 15.
    C. Barth, M. Reichling, Nature 414, 54 (2001)CrossRefADSGoogle Scholar
  16. 16.
    B. Gotsmann, D. Krüger, H. Fuchs, Europhys. Lett. 239, 153 (1997)CrossRefADSGoogle Scholar
  17. 17.
    B. Gotsmann, B. Anczykowski, C. Seidel, H. Fuchs, Appl. Surf. Sci. 140, 314 (1999)CrossRefADSGoogle Scholar
  18. 18.
    B. Gotsmann, C. Seidel, B. Anczykowski, H. Fuchs, Phys. Rev. B 60, 11051 (1999)CrossRefADSGoogle Scholar
  19. 19.
    H. Hölscher, W. Allers, A. Schwarz, U.D. Schwarz, R. Wiesendanger, Phys. Rev. Lett. 83(23), 4780 (2003)CrossRefGoogle Scholar
  20. 20.
    H. Hölscher, A. Schwarz, W. Allers, U.D. Schwarz, R. Wiesendanger, Phys. Rev. B 61, 12678 (2000)CrossRefADSGoogle Scholar
  21. 21.
    H. Hölscher, B. Gotsmann, W. Allers, U.D. Schwarz, H. Fuchs, R. Wiesendanger, Phys. Rev. B 64, 075402 (2001)CrossRefADSGoogle Scholar
  22. 22.
    H. H ölscher, S.M. Langkat, A. Schwarz, R. Wiesendanger, Appl. Phys. Lett. 81, 4428 (2002)Google Scholar
  23. 23.
    M.A. Lantz, H.J. Hug, R. Hoffmann, P.J.A. van Schendel, P. Kappenberger, S. Martin et al., Science 291, 2580 (2001)CrossRefADSGoogle Scholar
  24. 24.
    M. Heyde, G.H. Simon, H.P. Rust, H.-J. Freund, Appl. Phys. Lett. 89, 263107 (2006)CrossRefADSGoogle Scholar
  25. 25.
    Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, Nature 446, 64 (2007)CrossRefADSGoogle Scholar
  26. 26.
    J. Welker, A.J. Weymouth, F. Giessibl, ACS Nano 7, 7377 (2013)CrossRefGoogle Scholar
  27. 27.
    Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance, S. Morita, Nat. Mat. 4, 156 (2005)CrossRefGoogle Scholar
  28. 28.
    Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez et al., Science 322, 413 (2008)CrossRefADSGoogle Scholar
  29. 29.
    S. Kawai, A.S. Foster, F.F. Canova, H. Onodera, S.-I. Kitamura, E. Meyer, Nat. Commun. 5, 4403 (2014)CrossRefADSGoogle Scholar
  30. 30.
    K. Ruschmeier, A. Schirmeisen, R. Hoffmann, Phys. Rev. Lett. 101, 156102 (2008)CrossRefADSGoogle Scholar
  31. 31.
    A. Schrimeisen, D. Weiner, H. Fuchs, Phys. Rev. Lett. 97, 136101 (2006)CrossRefADSGoogle Scholar
  32. 32.
    B.J. Albers, T.C. Schwendemann, M.Z. Baykara, N. Pilet, M. Liebmann, E.I. Altman et al., Nat. Nanotechnol. 4, 307 (2009)CrossRefADSGoogle Scholar
  33. 33.
    M. Ashino, D. Obergfell, M. Haluska, S. Yang, A.N. Khlobystov, S. Roth et al., Nat. Nanotechnol. 3, 337 (2008)CrossRefADSGoogle Scholar
  34. 34.
    S. Kawai, Th Glatzel, S. Koch, A. Baratoff, E. Meyer, Phys. Rev. B 83, 035421 (2011)CrossRefADSGoogle Scholar
  35. 35.
    B. Such, T. Glatzel, S. Kawai, S. Koch, E. Meyer, J. Vac. Sci. Technol. B 28, C4B1 (2010)Google Scholar
  36. 36.
    M. Ternes, C.P. Lutz, C.F. Hirjibehedin, F.J. Giessibl, A.J. Heinrich, Science 319, 1066–1069 (2008)CrossRefADSGoogle Scholar
  37. 37.
    M. Abe, K. Morita, Noncontact Atomic Force Microscopy, vol. 2 (Springer, Berlin, 2009), Chap. 2, pp. 15–30Google Scholar
  38. 38.
    O. Custance, N. Oyabu, Y. Sugimoto, Noncontact Atomic Force Microscopy, vol. 2 (Springer, Berlin, 2009), Chap. 3, pp. 31–68Google Scholar
  39. 39.
    A. Schirmeisen, H. Hölscher, U. Schwarz, Noncontact Atomic Force Microscopy, vol. 2 (Springer, Berlin, 2009), Chap. 5, pp. 95–119Google Scholar
  40. 40.
    R.J. Wilson, G. Meijer, D.S. Bethune, R.D. Johnson, D.D. Chambliss, M.S. de Vries et al., Nature 348, 621–622 (1990)CrossRefADSGoogle Scholar
  41. 41.
    B. Gotsmann, C. Schmidt, C. Seidel, H. Fuchs, Eur. Phys. J. B. 4, 267 (1998)CrossRefADSGoogle Scholar
  42. 42.
    A. Sasahara, H. Onishi, Noncontact Atomic Force Microscopy (Springer, Berlin, 2002), Chap. 13, pp. 215–232Google Scholar
  43. 43.
    Y. Sugawara, Noncontact Atomic Force Microscopy (Springer, Berlin, 2002), Chap. 11, pp. 183–192Google Scholar
  44. 44.
    L. Nony, E. Gnecco, A. Baratoff, A. Alkauskas, R. Bennewitz, O. Pfeiffer et al., Nano Lett. 4, 2185 (2004)CrossRefADSGoogle Scholar
  45. 45.
    Ch. Loppacher, M. Guggisberg, O. Pfeiffer, E. Meyer, M. Bammerlin, R. Lüthi et al., Phys. Rev. Lett. 90, 066107 (2003)CrossRefADSGoogle Scholar
  46. 46.
    M. Ashino, A. Schwarz, T. Behnke, R. Wiesendanger, Phys. Rev. Lett. 93, 136101 (2004)CrossRefADSGoogle Scholar
  47. 47.
    F.J. Giessibl, Noncontact Atomic Force Microscopy (Springer, Berlin, 2002), Chap. 6, pp. 121–142Google Scholar
  48. 48.
    F.J. Giessibl, Rev. Mod. Phys. 75, 949 (2003)CrossRefADSGoogle Scholar
  49. 49.
    M. Heyde, M. Kulawik, H.P. Rust, H.J. Freund, Rev. Sci. Instrum. 75, 2446 (2004)CrossRefADSGoogle Scholar
  50. 50.
    L. Gross, F. Mohn, P. Liljeroth, J. Repp, F.J. Giessibl, G. Meyer, Science 324, 1428 (2009)CrossRefADSGoogle Scholar
  51. 51.
    L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, Science 325, 1110 (2009)CrossRefADSGoogle Scholar
  52. 52.
    T. König, G.H. Simon, H.-P. Rust, G. Pacchioni, M. Heyde, H.-J. Freund, JACS 131, 17544 (2009)CrossRefGoogle Scholar
  53. 53.
    T. Leoni, O. Guillermet, H. Walch, V. Langlais, A. Scheuermann, J. Bonvoisin et al., Phys. Rev. Lett. 106, 216103 (2011)CrossRefADSGoogle Scholar
  54. 54.
    H. Walch, T. Leoni, O. Guillermet, V. Langlais, A. Scheueurmann J. Bonvoisin, S. Gauthier, Phys. Rev. B 86, 075423 (2012)Google Scholar
  55. 55.
    F. Mohn, L. Gross, N. Moll, G. Meyer, Nat. Nanotechnol. 7, 227 (2012)CrossRefADSGoogle Scholar
  56. 56.
    B. Schuller, S.-X. Liu, Y. Geng, S. Descurtins, G. Meyer, L. Gross, Nanolett. 14, 3342–3342 (2014)CrossRefADSGoogle Scholar
  57. 57.
    S. Kawai, A. Sadeghi, X. Feng, P. Lifen, R. Pawlak, T. Glatzel, E. Meyer et al., ACS Nano 7, 9098 (2013)Google Scholar
  58. 58.
    F. Mohn, B. Schuller, L. Gross, G. Meyer, Appl. Phys. Lett. 102, 073109 (2013)CrossRefADSGoogle Scholar
  59. 59.
    F. Mohn, L. Gross, G. Meyer, Appl. Phys. Lett. 99, 053106 (2011)CrossRefADSGoogle Scholar
  60. 60.
    R. Pawlak, S. Kawai, S. Fremy, T. Glatzel, E. Meyer, ACS Nano 5, 6349 (2011)CrossRefGoogle Scholar
  61. 61.
    R. Pawlak, S. Kawai, S. Fremy, T. Glatzel, E. Meyer, J. Phys. Cond. Matter 24, 084005 (2012)CrossRefADSGoogle Scholar
  62. 62.
    R. Pawlak, S. Fremy, S. Kawai, T. Glatzel, H. Fang, L.-A. Fendt et al., ACS Nano 6, 6318–6324 (2012)CrossRefGoogle Scholar
  63. 63.
    S. Fremy, S. Kawai, R. Pawlak, Th. Glatzel, A. Baratoff, E. Meyer, Nanotechnology 23, 055401 (2012)Google Scholar
  64. 64.
    R. Pawlak, Th Glatzel, V. Pichot, L. Schmidlin, S. Kawai, S. Fremy et al., Nano Lett. 13, 5803–5807 (2013)CrossRefADSGoogle Scholar
  65. 65.
    N. Fournier, C. Wagner, C. Weiss, R. Temirov, F.S. Tautz, Phys. Rev. B 84, 035435 (2011)CrossRefADSGoogle Scholar
  66. 66.
    N. Hauptmann, F. Mohn, L. Gross, G. Meyer, T. Frederiksen, R. Berndt, New. J. Phys. 14, 073032 (2012)CrossRefADSGoogle Scholar
  67. 67.
    C. Chiutu, A.M. Sweetman, A.J. Lakin, A. Stannard, S. Jarvis, L. Kantorovich et al., Phys. Rev. Lett. 108, 268302 (2012)CrossRefADSGoogle Scholar
  68. 68.
    A. Sweetman, S.P. Jarvis, H. Sang, I. Lekkas, P. Rahe, Y. Wang et al., Nat. Commun. 5, 3931 (2014)CrossRefADSGoogle Scholar
  69. 69.
    C. Lotze, M. Corso, K.J. Franke, F. von Oppen, J.I. Pascual, Science 338, 779 (2012)CrossRefADSGoogle Scholar
  70. 70.
    J. Repp, G. Meyer, S.M. Stojkovic, A. Gourdon, C. Joachim, Phys. Rev. Lett. 94, 026803 (2005)Google Scholar
  71. 71.
    J. Repp, G. Meyer, S. Paavilainen, F.E. Olsson, M. Persson, Science 312, 1196 (2006)CrossRefADSGoogle Scholar
  72. 72.
    M.Z. Baykara, T.C. Schwendemann, E.I. Altman, U.D. Schwarz, Adv. Mater. 22, 2838 (2010)CrossRefGoogle Scholar
  73. 73.
    M. Abe, Y. Sugimoto, T. Namikawa, K. Morita, N. Oyabu, S. Morita, Appl. Phys. Lett. 90, 203103 (2007)CrossRefADSGoogle Scholar
  74. 74.
    S. Kawai, T. Glatzel, S. Koch, A. Baratoff, E. Meyer, Phys. Rev. B 83, 035421 (2011)Google Scholar
  75. 75.
    J.E. Sader, S.P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004)CrossRefADSGoogle Scholar
  76. 76.
    F.J. Giessibl, Phys. Rev. B 56, 16010 (1997)CrossRefADSGoogle Scholar
  77. 77.
    U. Dürig, Appl. Phys. Lett. 76, 1203 (2000)CrossRefADSGoogle Scholar
  78. 78.
    F.J. Giessibl, Appl. Phys. Lett. 78, 123 (2001)CrossRefADSGoogle Scholar
  79. 79.
    B. Such, T. Glatzel, S. kawai, S. Koch, E. Meyer, J. Vac. Sci. Technol. B 29, C4B1 (2010)Google Scholar
  80. 80.
    S. Sadewasser, T. Glatzel, Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces (Springer, Berlin, 2012)CrossRefGoogle Scholar
  81. 81.
    L. Nony, A.S. Foster, F. Bocquet, C. Loppacher, Phys. Rev. Lett. 103, 036802 (2009)CrossRefADSGoogle Scholar
  82. 82.
    F. Bocquet, L. Nony, C. Loppacher, Phys. Rev. B 83, 035411 (2011)CrossRefADSGoogle Scholar
  83. 83.
    A. Sadeghi, A. Baratoff, S.A. Ghasemi, S. Goedecker, T. Glatzel, S. Kawai et al., Phys. Rev. B 86, 075407 (2012)CrossRefADSGoogle Scholar
  84. 84.
    J. Tersoff, D.R. Hamann, Phys. Rev. Lett. 50, 1998–2001 (1983)CrossRefADSGoogle Scholar
  85. 85.
    J. Tersoff, D.R. Hamann, Phys. Rev. B 31, 805–13 (1985)CrossRefADSGoogle Scholar
  86. 86.
    S.A. Burke, J.M. Mativetsky, R. Hoffmann, P. Grütter, Phys. Rev. Lett. 94, 096102 (2005)CrossRefADSGoogle Scholar
  87. 87.
    L. Gross, F. Mohn, N. Moll, B. Schuler, A. Criado, E. Guitian, A. Diego Pena, A. Gourdon, G. Meyer. Science 337, 1326–1329 (2013)Google Scholar
  88. 88.
    A.J. Weymouth, T. Hofmann, F.J. Giessibl, Science 343, 1120–1122 (2014)CrossRefADSGoogle Scholar
  89. 89.
    K. Boukari, P. Sonnet, E. Duverger, Chem. Phys. Chem. 13, 3945–3951 (2012)Google Scholar
  90. 90.
    S. Kawaia, M. Koch, E. Gnecco, A. Sadeghi, R. Pawlak, T. Glatzel et al., Proc. Natl. Acad. Sci. USA 111, 3968–3972 (2014)CrossRefADSGoogle Scholar
  91. 91.
    L. Grill, M. Dyer, L. Lafferentz, M. Persson, M.V. Peters, S. Hecht, Nat. Nanotechnol. 2, 687–691 (2007)CrossRefADSGoogle Scholar
  92. 92.
    N.A.A. Zwaneveld, R. Pawlak, M. Abel, D. Catalin, D. Gigmes, D. Bertin et al., JACS 130, 6678–6679 (2008)CrossRefGoogle Scholar
  93. 93.
    L. Lafferentz, F. Ample, H. Yu, S. Hecht, C. Joachim, L. Grill, Science 323, 1193 (2009)CrossRefADSGoogle Scholar
  94. 94.
    W.A. Steele, Surf. Sci. 36, 317–357 (1973)CrossRefADSGoogle Scholar
  95. 95.
    R. Pawlak et al., submittedGoogle Scholar
  96. 96.
    S. Fremy et al., submittedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of BaselBaselSwitzerland

Personalised recommendations