Skip to main content

Compressed Data Structures for Range Searching

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8977)

Abstract

We study the orthogonal range searching problem on points that have a significant number of geometric repetitions, that is, subsets of points that are identical under translation. Such repetitions occur in scenarios such as image compression, GIS applications and in compactly representing sparse matrices and web graphs. Our contribution is twofold. First, we show how to compress geometric repetitions that may appear in standard range searching data structures (such as K-D trees, Quad trees, Range trees, R-trees, Priority R-trees, and K-D-B trees), and how to implement subsequent range queries on the compressed representation with only a constant factor overhead. Secondly, we present a compression scheme that efficiently identifies geometric repetitions in point sets, and produces a hierarchical clustering of the point sets, which combined with the first result leads to a compressed representation that supports range searching.

Keywords

  • Data and image compression
  • Range searching
  • Relative tree
  • DAG compression
  • Hierarchical clustering

Supported by a grant from the Danish National Advanced Technology Foundation.

P. Bille and I.L. Gørtz—Supported by a grant from the Danish Council for Independent Research \(\vert \) Natural Sciences.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-15579-1_45
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-15579-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arge, L., Berg, M.D., Haverkort, H., Yi, K.: The Priority R-tree: A practically efficient and worst-case optimal R-tree. ACM TALG 4(1), 9 (2008)

    Google Scholar 

  2. Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation representations. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 170–183. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  3. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes. Acta Informatica 1(3), 173–189 (1972)

    CrossRef  Google Scholar 

  4. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Comm. ACM 18(9), 509–517 (1975)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Bentley, J.L.: Multidimensional binary search trees in database applications. IEEE Trans. Softw. Eng. 4, 333–340 (1979)

    CrossRef  Google Scholar 

  6. Bentley, J.L., Saxe, J.B.: Decomposable searching problems I. Static-to-dynamic transformation. J. Algorithms 1(4), 301–358 (1980)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. de Bernardo, G., Álvarez-García, S., Brisaboa, N.R., Navarro, G., Pedreira, O.: Compact querieable representations of raster data. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 96–108. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  8. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search structures on a grid with applications to text indexing. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  9. Brisaboa, N.R., Ladra, S., Navarro, G.: k\(^2\)-trees for compact web graph representation. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 18–30. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  10. Clarkson, K.L.: Fast algorithms for the all nearest neighbors problem. In: Proc. 24th FOCS, vol. 83, pp. 226–232 (1983)

    Google Scholar 

  11. Comer, D.: Ubiquitous B-tree. ACM CSUR 11(2), 121–137 (1979)

    CrossRef  MATH  Google Scholar 

  12. Dick, C., Schneider, J., Westermann, R.: Efficient geometry compression for gpu-based decoding in realtime terrain rendering. CGF 28(1), 67–83 (2009)

    Google Scholar 

  13. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem. J. ACM 27(4), 758–771 (1980)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Eppstein, D., Goodrich, M.T., Sun, J.Z.: Skip quadtrees: Dynamic data structures for multidimensional point sets. IJCGA 18(01n02), 131–160 (2008)

    Google Scholar 

  15. Farzan, A., Gagie, T., Navarro, G.: Entropy-bounded representation of point grids. CGTA 47(1), 1–14 (2014)

    MATH  MathSciNet  Google Scholar 

  16. Gaede, V., Günther, O.: Multidimensional access methods. ACM CSUR 30(2), 170–231 (1998)

    CrossRef  Google Scholar 

  17. Galli, N., Seybold, B., Simon, K.: Compression of sparse matrices: Achieving almost minimal table size. In: Proc. ALEX, pp. 27–33 (1998)

    Google Scholar 

  18. Alvarez Garcia, S., Brisaboa, N.R., de Bernardo, G., Navarro, G.: Interleaved k2-tree: indexing and navigating ternary relations. In: Proc. DCC, pp. 342–351 (2014)

    Google Scholar 

  19. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proc. 1984 ACM SIGMOD, vol. 14, pp. 47–57 (1984)

    Google Scholar 

  20. Haegler, S., Wonka, P., Arisona, S.M., Van Gool, L., Mueller, P.: Grammar-based encoding of facades. CGF 29(4), 1479–1487 (2010)

    Google Scholar 

  21. Kanth, K.V.R., Singh, A.K.: Optimal dynamic range searching in non-replicating index structures. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 257–276. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  22. van Kreveld, M.J., Overmars, M.H.: Divided k-d trees. Algorithmica 6(1–6), 840–858 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  23. Lee, D., Wong, C.: Quintary trees: a file structure for multidimensional datbase sytems. ACM TODS 5(3), 339–353 (1980)

    CrossRef  MATH  Google Scholar 

  24. Lueker, G.S.: A data structure for orthogonal range queries. In: Proc. 19th FOCS, pp. 28–34 (1978)

    Google Scholar 

  25. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. TCS 387(3), 332–347 (2007)

    CrossRef  MATH  Google Scholar 

  26. Orenstein, J.A.: Multidimensional tries used for associative searching. Inform. Process. Lett. 14(4), 150–157 (1982)

    CrossRef  Google Scholar 

  27. Pajarola, R., Widmayer, P.: An image compression method for spatial search. IEEE Trans. Image Processing 9(3), 357–365 (2000)

    CrossRef  Google Scholar 

  28. Procopiuc, O., Agarwal, P.K., Arge, L., Vitter, J.S.: Bkd-tree: a dynamic scalable kd-tree. In: Proc. 8th SSTD, pp. 46–65 (2003)

    Google Scholar 

  29. Robinson, J.T.: The KDB-tree: a search structure for large multidimensional dynamic indexes. In: Proc. 1981 ACM SIGMOD, pp. 10–18 (1981)

    Google Scholar 

  30. Samet, H.: Applications of spatial data structures. Addison-Wesley (1990)

    Google Scholar 

  31. Schindler, G., Krishnamurthy, P., Lublinerman, R., Liu, Y., Dellaert, F.: Detecting and matching repeated patterns for automatic geo-tagging in urban environments. In: CVPR, pp. 1–7 (2008)

    Google Scholar 

  32. Tetko, I.V., Villa, A.E.: A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. J. Neurosci. Meth. 105(1), 1–14 (2001)

    CrossRef  Google Scholar 

  33. Zhu, Q., Yao, X., Huang, D., Zhang, Y.: An Efficient Data Management Approach for Large Cyber-City GIS. ISPRS Archives, 319–323 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Vind .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bille, P., Gørtz, I.L., Vind, S. (2015). Compressed Data Structures for Range Searching. In: Dediu, AH., Formenti, E., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2015. Lecture Notes in Computer Science(), vol 8977. Springer, Cham. https://doi.org/10.1007/978-3-319-15579-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15579-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15578-4

  • Online ISBN: 978-3-319-15579-1

  • eBook Packages: Computer ScienceComputer Science (R0)