Compressed Data Structures for Range Searching

  • Philip Bille
  • Inge Li Gørtz
  • Søren Vind
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8977)


We study the orthogonal range searching problem on points that have a significant number of geometric repetitions, that is, subsets of points that are identical under translation. Such repetitions occur in scenarios such as image compression, GIS applications and in compactly representing sparse matrices and web graphs. Our contribution is twofold. First, we show how to compress geometric repetitions that may appear in standard range searching data structures (such as K-D trees, Quad trees, Range trees, R-trees, Priority R-trees, and K-D-B trees), and how to implement subsequent range queries on the compressed representation with only a constant factor overhead. Secondly, we present a compression scheme that efficiently identifies geometric repetitions in point sets, and produces a hierarchical clustering of the point sets, which combined with the first result leads to a compressed representation that supports range searching.


Data and image compression Range searching Relative tree DAG compression Hierarchical clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arge, L., Berg, M.D., Haverkort, H., Yi, K.: The Priority R-tree: A practically efficient and worst-case optimal R-tree. ACM TALG 4(1), 9 (2008)Google Scholar
  2. 2.
    Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation representations. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 170–183. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  3. 3.
    Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes. Acta Informatica 1(3), 173–189 (1972)CrossRefGoogle Scholar
  4. 4.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Comm. ACM 18(9), 509–517 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bentley, J.L.: Multidimensional binary search trees in database applications. IEEE Trans. Softw. Eng. 4, 333–340 (1979)CrossRefGoogle Scholar
  6. 6.
    Bentley, J.L., Saxe, J.B.: Decomposable searching problems I. Static-to-dynamic transformation. J. Algorithms 1(4), 301–358 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    de Bernardo, G., Álvarez-García, S., Brisaboa, N.R., Navarro, G., Pedreira, O.: Compact querieable representations of raster data. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 96–108. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search structures on a grid with applications to text indexing. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  9. 9.
    Brisaboa, N.R., Ladra, S., Navarro, G.: k\(^2\)-trees for compact web graph representation. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 18–30. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  10. 10.
    Clarkson, K.L.: Fast algorithms for the all nearest neighbors problem. In: Proc. 24th FOCS, vol. 83, pp. 226–232 (1983)Google Scholar
  11. 11.
    Comer, D.: Ubiquitous B-tree. ACM CSUR 11(2), 121–137 (1979)CrossRefzbMATHGoogle Scholar
  12. 12.
    Dick, C., Schneider, J., Westermann, R.: Efficient geometry compression for gpu-based decoding in realtime terrain rendering. CGF 28(1), 67–83 (2009)Google Scholar
  13. 13.
    Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem. J. ACM 27(4), 758–771 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Eppstein, D., Goodrich, M.T., Sun, J.Z.: Skip quadtrees: Dynamic data structures for multidimensional point sets. IJCGA 18(01n02), 131–160 (2008)Google Scholar
  15. 15.
    Farzan, A., Gagie, T., Navarro, G.: Entropy-bounded representation of point grids. CGTA 47(1), 1–14 (2014)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Gaede, V., Günther, O.: Multidimensional access methods. ACM CSUR 30(2), 170–231 (1998)CrossRefGoogle Scholar
  17. 17.
    Galli, N., Seybold, B., Simon, K.: Compression of sparse matrices: Achieving almost minimal table size. In: Proc. ALEX, pp. 27–33 (1998)Google Scholar
  18. 18.
    Alvarez Garcia, S., Brisaboa, N.R., de Bernardo, G., Navarro, G.: Interleaved k2-tree: indexing and navigating ternary relations. In: Proc. DCC, pp. 342–351 (2014)Google Scholar
  19. 19.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proc. 1984 ACM SIGMOD, vol. 14, pp. 47–57 (1984)Google Scholar
  20. 20.
    Haegler, S., Wonka, P., Arisona, S.M., Van Gool, L., Mueller, P.: Grammar-based encoding of facades. CGF 29(4), 1479–1487 (2010)Google Scholar
  21. 21.
    Kanth, K.V.R., Singh, A.K.: Optimal dynamic range searching in non-replicating index structures. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 257–276. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  22. 22.
    van Kreveld, M.J., Overmars, M.H.: Divided k-d trees. Algorithmica 6(1–6), 840–858 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Lee, D., Wong, C.: Quintary trees: a file structure for multidimensional datbase sytems. ACM TODS 5(3), 339–353 (1980)CrossRefzbMATHGoogle Scholar
  24. 24.
    Lueker, G.S.: A data structure for orthogonal range queries. In: Proc. 19th FOCS, pp. 28–34 (1978)Google Scholar
  25. 25.
    Mäkinen, V., Navarro, G.: Rank and select revisited and extended. TCS 387(3), 332–347 (2007)CrossRefzbMATHGoogle Scholar
  26. 26.
    Orenstein, J.A.: Multidimensional tries used for associative searching. Inform. Process. Lett. 14(4), 150–157 (1982)CrossRefGoogle Scholar
  27. 27.
    Pajarola, R., Widmayer, P.: An image compression method for spatial search. IEEE Trans. Image Processing 9(3), 357–365 (2000)CrossRefGoogle Scholar
  28. 28.
    Procopiuc, O., Agarwal, P.K., Arge, L., Vitter, J.S.: Bkd-tree: a dynamic scalable kd-tree. In: Proc. 8th SSTD, pp. 46–65 (2003)Google Scholar
  29. 29.
    Robinson, J.T.: The KDB-tree: a search structure for large multidimensional dynamic indexes. In: Proc. 1981 ACM SIGMOD, pp. 10–18 (1981)Google Scholar
  30. 30.
    Samet, H.: Applications of spatial data structures. Addison-Wesley (1990)Google Scholar
  31. 31.
    Schindler, G., Krishnamurthy, P., Lublinerman, R., Liu, Y., Dellaert, F.: Detecting and matching repeated patterns for automatic geo-tagging in urban environments. In: CVPR, pp. 1–7 (2008)Google Scholar
  32. 32.
    Tetko, I.V., Villa, A.E.: A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. J. Neurosci. Meth. 105(1), 1–14 (2001)CrossRefGoogle Scholar
  33. 33.
    Zhu, Q., Yao, X., Huang, D., Zhang, Y.: An Efficient Data Management Approach for Large Cyber-City GIS. ISPRS Archives, 319–323 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.DTU ComputeTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations