Skip to main content

Complexity Classes for Membrane Systems: A Survey

  • Conference paper
  • First Online:
  • 1421 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8977))

Abstract

The computational power of membrane systems, in their different variants, can be studied by defining classes of problems that can be solved within given bounds on computation time or space, and comparing them with usual computational complexity classes related to the Turing Machine model. Here we will consider in particular membrane systems with active membranes (where new membranes can be created by division of existing membranes). The problems related to the definition of time/space complexity classes for membrane systems will be discussed, and the resulting hierarchy will be compared with the usual hierarchy of complexity classes, mainly through simulations of Turing Machines by (uniform families of) membrane systems with active membranes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: The computational power of exponential-space P systems with active membranes. In: Martínez-del-Amor, M.A., Păun, Gh., Pérez-Hurtado, I., Romero-Campero, F.J. (eds.) Proceedings of the Tenth Brainstorming Week on Membrane Computing, vol. I, pp. 35–60. Fénix Editora (2012)

    Google Scholar 

  2. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: Space complexity equivalence of P systems with active membranes and Turing machines. Theoretical Computer Science 529, 69–81 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alhazov, A., Martín-Vide, C., Pan, L.: Solving a PSPACE-complete problem by recognizing P systems with restricted active membranes. Fundamenta Informaticae 58(2), 67–77 (2003)

    MathSciNet  Google Scholar 

  4. Hemaspaandra, L.A., Ogihara, M.: The Complexity Theory Companion. Texts in Theoretical Computer Science. Springer (2002)

    Google Scholar 

  5. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Constant-space P systems with active membranes. Fundamenta Informaticae 134(1–2), 111–128 (2014)

    MathSciNet  Google Scholar 

  6. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Membrane division, oracles, and the counting hierarchy. Fundamenta Informaticae 137, 1–15 (2015)

    Google Scholar 

  7. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating elementary active membranes, with an application to the P conjecture. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 284–299. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: A gap in the space hierarchy of P systems with active membranes. Journal of Automata, Languages and Combinatorics 19(1–4), 173–184 (2014)

    MathSciNet  Google Scholar 

  9. Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC\(^1\). Journal of Computer and System Sciences 41(3), 274–306 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Murphy, N., Woods, D.: The computational power of membrane systems under tight uniformity conditions. Natural Computing 10(1), 613–632 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)

    Google Scholar 

  12. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)

    Google Scholar 

  13. Păun, Gh.: P systems with active membranes: Attacking NP-complete problems. Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

    Google Scholar 

  14. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press (2010)

    Google Scholar 

  15. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Natural Computing 2(3), 265–284 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Introducing a space complexity measure for P systems. International Journal of Computers, Communications & Control 4(3), 301–310 (2009)

    Google Scholar 

  17. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Elementary active membranes have the power of counting. International Journal of Natural Computing Research 2(3), 329–342 (2011)

    Article  Google Scholar 

  18. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active membranes working in polynomial space. International Journal of Foundations of Computer Science 22(1), 65–73 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems simulating oracle computations. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 346–358. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Sublinear-space P systems with active membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 342–357. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Sosík, P.: The computational power of cell division in P systems: Beating down parallel computers? Natural Computing 2(3), 287–298 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Valsecchi, A., Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: An efficient simulation of polynomial-space turing machines by P systems with active membranes. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 461–478. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional Models of Computation, UMC 2000, Proceedings of the Second International Conference, pp. 289–301. Springer (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Mauri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mauri, G., Leporati, A., Manzoni, L., Porreca, A.E., Zandron, C. (2015). Complexity Classes for Membrane Systems: A Survey. In: Dediu, AH., Formenti, E., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2015. Lecture Notes in Computer Science(), vol 8977. Springer, Cham. https://doi.org/10.1007/978-3-319-15579-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15579-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15578-4

  • Online ISBN: 978-3-319-15579-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics